bibtype J - Journal Article
ARLID 0545168
utime 20240903170649.1
mtime 20210903235959.9
WOS 000659161800008
SCOPUS 85108862284
DOI 10.14736/kyb-2021-2-0332
title (primary) (eng) Some notes on the category of fuzzy implications on bounded lattices
specification
page_count 20 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 57
volume 2 (2021)
page_num 332-351
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword Fuzzy implication
keyword Skeleton of category
keyword T-norm
author (primary)
ARLID cav_un_auth*0413276
name1 Yousefi
name2 A.
country IR
share 30
author
ARLID cav_un_auth*0413277
name1 Mashinchi
name2 M.
country IR
share 35
garant K
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 35
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/E/mesiar-0545168.pdf
source
url https://www.kybernetika.cz/content/2021/2/332
cas_special
abstract (eng) In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on the category of fuzzy implications on a bounded lattice that results in the existence of the limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this category. Then a subcategory of this category, called the skeleton, is studied. Where none of any two fuzzy implications are Φ-conjugate.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2022
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0321918
confidential S
mrcbC86 3+4 Article Computer Science Cybernetics
mrcbC91 A
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.225
mrcbT16-s 0.247
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2021
mrcbU14 85108862284 SCOPUS
mrcbU24 PUBMED
mrcbU34 000659161800008 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 57 č. 2 2021 332 351 Ústav teorie informace a automatizace AV ČR, v. v. i.