bibtype J - Journal Article
ARLID 0545221
utime 20250310160047.4
mtime 20210906235959.9
SCOPUS 85105053349
WOS 000836666600081
DOI 10.1109/TPAMI.2021.3075916
title (primary) (eng) Texture Segmentation Benchmark
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256725
ISSN 0162-8828
title IEEE Transactions on Pattern Analysis and Machine Intelligence
volume_id 44
volume 9 (2022)
page_num 5647-5663
publisher
name IEEE Computer Society
keyword Benchmark
keyword Image segmentation
keyword Texture segmentation
keyword (Un)supervised segmentation
keyword Segmentation criteria
keyword Scale, rotation and illumination invariants
author (primary)
ARLID cav_un_auth*0101165
name1 Mikeš
name2 Stanislav
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/RO/haindl-0545221.pdf
source
url https://ieeexplore.ieee.org/document/9416785
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) The Prague texture segmentation data-generator and benchmark (\href{https://mosaic.utia.cas.cz}{mosaic.utia.cas.cz}) is a web-based service designed to mutually compare and rank (recently nearly 200) different static and dynamic texture and image segmenters, to find optimal parametrization of a segmenter and support the development of new segmentation and classification methods. The benchmark verifies segmenter performance characteristics on potentially unlimited monospectral, multispectral, satellite, and bidirectional texture function (BTF) data using an extensive set of over forty prevalent criteria. It also enables us to test for noise robustness and scale, rotation, or illumination invariance. It can be used in other applications, such as feature selection, image compression, query by pictorial example, etc. The benchmark's functionalities are demonstrated in evaluating several examples of leading previously published unsupervised and supervised image segmentation algorithms. However, they are used to illustrate the benchmark functionality and not review the recent image segmentation state-of-the-art.
result_subspec WOS
RIV BD
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2023
num_of_auth 2
mrcbC52 4 A sml 4as 2rh 20231122145922.3 2 R hod 20250310153941.7 20250310160047.4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0322145
confidential S
contract
name IEEE COPYRIGHT FORM
date 20210421
mrcbC86 1 Article Computer Science Artificial Intelligence|Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 7.008
mrcbT16-s 4.447
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2022
mrcbTft \nSoubory v repozitáři: haindl-0545221.pdf, haindl-0545221-CopyrightReceipt.pdf
mrcbU14 85105053349 SCOPUS
mrcbU24 33905324 PUBMED
mrcbU34 000836666600081 WOS
mrcbU63 cav_un_epca*0256725 IEEE Transactions on Pattern Analysis and Machine Intelligence 0162-8828 1939-3539 Roč. 44 č. 9 2022 5647 5663 IEEE Computer Society