bibtype J - Journal Article
ARLID 0545447
utime 20240103230145.5
mtime 20210912235959.9
SCOPUS 85114479243
WOS 000704053400012
DOI 10.1016/j.ijar.2021.07.014
title (primary) (eng) The dual polyhedron to the chordal graph polytope and the rebuttal of the chordal graph conjecture
specification
page_count 16 s.
media_type E
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 138
volume 1 (2021)
page_num 188-203
publisher
name Elsevier
keyword learning decomposable models
keyword chordal graph polytope
keyword clutter inequalities
keyword dual polyhedron
author (primary)
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0332730
name1 Cussens
name2 J.
country GB
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/MTR/studeny-0545447.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0888613X21001316?via%3Dihub
cas_special
project
project_id GA19-04579S
agency GA ČR
country CZ
ARLID cav_un_auth*0380558
abstract (eng) The integer linear programming approach to structural learning of decomposable graphical models led us earlier to the concept of a chordal graph polytope. An open mathematical question motivated by this research is what is the minimal set of linear inequalities defining this polytope, i.e. what are its facet-defining inequalities, and we came up in 2016 with a specific conjecture that it is the collection of so-called clutter inequalities. In this theoretical paper we give an implicit characterization of the minimal set of inequalities. Specifically, we introduce a dual polyhedron (to the chordal graph polytope) defined by trivial equality constraints, simple monotonicity inequalities and certain inequalities assigned to incomplete chordal graphs. Our main result is that the vertices of this polyhedron yield the facet-defining inequalities for the chordal graph polytope. We also show that the original conjecture is equivalent to the condition that all vertices of the dual polyhedron are zero-one vectors. Using that result we disprove the original conjecture: we find a vector in the dual polyhedron which is not in the convex hull of zero-one vectors from the dual polyhedron.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2022
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0322204
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.721
mrcbT16-s 1.066
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2021
mrcbU14 85114479243 SCOPUS
mrcbU24 PUBMED
mrcbU34 000704053400012 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 138 č. 1 2021 188 203 Elsevier