bibtype J - Journal Article
ARLID 0545582
utime 20240103230147.7
mtime 20210917235959.9
SCOPUS 85124813473
title (primary) (eng) Progressive projection and log-optimal investment in the frictionless market
specification
page_count 41 s.
media_type P
serial
ARLID cav_un_epca*0545581
ISSN 0321-3900
title Theory of Stochastic Processes
volume_id 25
volume 1 (2020)
page_num 37-77
publisher
name Natsional'na Akademiya Nauk Ukrainy
keyword log-optimal investment
keyword progressive projection
keyword filtering
author (primary)
ARLID cav_un_auth*0413920
name1 Dostál
name2 Petr
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0365236
name1 Mach
name2 Tibor
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/RO/dostal-0545582.pdf
source
url http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=thsp&paperid=311&option_lang=eng
cas_special
abstract (eng) In this paper, we introduce notion of progressive projection, closely related to the extended predictable projection. This notion is exible enough to help us treat the problem of log-optimal investment without transaction costs almost exhaustively in case when the rate of return is not observed. We prove some results saying that the semimartingale property of a continuous process is preserved when changing the filtration to the one generated by the process under very general conditions. We also had to introduce a very useful and exible notion of so called enriched filtration.
result_subspec SCOPUS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2022
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0322311
cooperation
ARLID cav_un_auth*0335448
name MFF Charles University, V Holešovickách 2, 180 00 Prague 8
country CZ
confidential S
mrcbC91 A
mrcbT16-s 0.117
mrcbT16-E Q4
arlyear 2020
mrcbU14 85124813473 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0545581 Theory of Stochastic Processes 0321-3900 Roč. 25 č. 1 2020 37 77 Natsional'na Akademiya Nauk Ukrainy