bibtype |
J -
Journal Article
|
ARLID |
0545582 |
utime |
20240103230147.7 |
mtime |
20210917235959.9 |
SCOPUS |
85124813473 |
title
(primary) (eng) |
Progressive projection and log-optimal investment in the frictionless market |
specification |
page_count |
41 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0545581 |
ISSN |
0321-3900 |
title
|
Theory of Stochastic Processes |
volume_id |
25 |
volume |
1 (2020) |
page_num |
37-77 |
publisher |
name |
Natsional'na Akademiya Nauk Ukrainy |
|
|
keyword |
log-optimal investment |
keyword |
progressive projection |
keyword |
filtering |
author
(primary) |
ARLID |
cav_un_auth*0413920 |
name1 |
Dostál |
name2 |
Petr |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0365236 |
name1 |
Mach |
name2 |
Tibor |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
abstract
(eng) |
In this paper, we introduce notion of progressive projection, closely related to the extended predictable projection. This notion is exible enough to help us treat the problem of log-optimal investment without transaction costs almost exhaustively in case when the rate of return is not observed. We prove some results saying that the semimartingale property of a continuous process is preserved when changing the filtration to the one generated by the process under very general conditions. We also had to introduce a very useful and exible notion of so called enriched filtration. |
result_subspec |
SCOPUS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2022 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0322311 |
cooperation |
ARLID |
cav_un_auth*0335448 |
name |
MFF Charles University, V Holešovickách 2, 180 00 Prague 8 |
country |
CZ |
|
confidential |
S |
mrcbC91 |
A |
mrcbT16-s |
0.117 |
mrcbT16-E |
Q4 |
arlyear |
2020 |
mrcbU14 |
85124813473 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0545581 Theory of Stochastic Processes 0321-3900 Roč. 25 č. 1 2020 37 77 Natsional'na Akademiya Nauk Ukrainy |
|