bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0546213 |
utime |
20220320214410.8 |
mtime |
20211005235959.9 |
DOI |
10.1007/978-3-030-88113-9_56 |
title
(primary) (eng) |
Underground Archeological Structures Detection |
specification |
page_count |
13 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0546212 |
ISBN |
978-3-030-88113-9 |
ISSN |
1865-0929 |
title
|
Advances in Computational Collective Intelligence |
page_num |
690-702 |
publisher |
place |
Cham |
name |
Springer International Publishing |
year |
2021 |
|
editor |
name1 |
Wojtkiewicz |
name2 |
Krystian |
|
editor |
|
editor |
name1 |
Pimenidis |
name2 |
Elias |
|
editor |
name1 |
Maleszka |
name2 |
Marcin |
|
|
keyword |
Remote sensing archeology |
keyword |
underground heritage site recognition |
keyword |
aerial image-based automated site detection |
author
(primary) |
ARLID |
cav_un_auth*0414746 |
name1 |
Moudrá |
name2 |
A. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA19-12340S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0376011 |
|
abstract
(eng) |
This paper introduces and compares three approaches for automatic archaeological heritage site detection hidden under soil cover from public aerial images. The methods use low quality public aerial RGB spectral data restricted by the land-use map to agricultural regions in the vegetation season to detect underground structure influencing plants growing on the surface soil layer. |
action |
ARLID |
cav_un_auth*0414747 |
name |
International Conference on Computational Collective Intelligence 2021 /13./ |
dates |
20210929 |
mrcbC20-s |
20211001 |
place |
Kallithea, Rhodes |
country |
GR |
|
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20202 |
reportyear |
2022 |
num_of_auth |
2 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0323756 |
cooperation |
ARLID |
cav_un_auth*0394151 |
name |
Fakulta informačních technologií ČVUT |
institution |
FIT ČVUT |
country |
CZ |
|
confidential |
S |
article_num |
56 |
arlyear |
2021 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0546212 Advances in Computational Collective Intelligence Springer International Publishing 2021 Cham 690 702 978-3-030-88113-9 Communications in Computer and Information Science 1463 1865-0929 |
mrcbU67 |
Wojtkiewicz Krystian 340 |
mrcbU67 |
Treur Jan 340 |
mrcbU67 |
Pimenidis Elias 340 |
mrcbU67 |
Maleszka Marcin 340 |
|