bibtype C - Conference Paper (international conference)
ARLID 0546213
utime 20220320214410.8
mtime 20211005235959.9
DOI 10.1007/978-3-030-88113-9_56
title (primary) (eng) Underground Archeological Structures Detection
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0546212
ISBN 978-3-030-88113-9
ISSN 1865-0929
title Advances in Computational Collective Intelligence
page_num 690-702
publisher
place Cham
name Springer International Publishing
year 2021
editor
name1 Wojtkiewicz
name2 Krystian
editor
name1 Treur
name2 Jan
editor
name1 Pimenidis
name2 Elias
editor
name1 Maleszka
name2 Marcin
keyword Remote sensing archeology
keyword underground heritage site recognition
keyword aerial image-based automated site detection
author (primary)
ARLID cav_un_auth*0414746
name1 Moudrá
name2 A.
country CZ
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/RO/haindl-0546213.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) This paper introduces and compares three approaches for automatic archaeological heritage site detection hidden under soil cover from public aerial images. The methods use low quality public aerial RGB spectral data restricted by the land-use map to agricultural regions in the vegetation season to detect underground structure influencing plants growing on the surface soil layer.
action
ARLID cav_un_auth*0414747
name International Conference on Computational Collective Intelligence 2021 /13./
dates 20210929
mrcbC20-s 20211001
place Kallithea, Rhodes
country GR
RIV BD
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2022
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0323756
cooperation
ARLID cav_un_auth*0394151
name Fakulta informačních technologií ČVUT
institution FIT ČVUT
country CZ
confidential S
article_num 56
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0546212 Advances in Computational Collective Intelligence Springer International Publishing 2021 Cham 690 702 978-3-030-88113-9 Communications in Computer and Information Science 1463 1865-0929
mrcbU67 Wojtkiewicz Krystian 340
mrcbU67 Treur Jan 340
mrcbU67 Pimenidis Elias 340
mrcbU67 Maleszka Marcin 340