bibtype C - Conference Paper (international conference)
ARLID 0546216
utime 20220320214411.1
mtime 20211005235959.9
DOI 10.1007/978-3-030-88113-9_52
title (primary) (eng) Optimized Texture Spectral Similarity Criteria
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0546212
ISBN 978-3-030-88113-9
ISSN 1865-0929
title Advances in Computational Collective Intelligence
page_num 644-655
publisher
place Cham
name Springer International Publishing
year 2021
editor
name1 Wojtkiewicz
name2 Krystian
editor
name1 Treur
name2 Jan
editor
name1 Pimenidis
name2 Elias
editor
name1 Maleszka
name2 Marcin
keyword Texture spectral similarity criterion
keyword Bidirectional Texture Function
keyword hyperspectral data
keyword texture modeling
author (primary)
ARLID cav_un_auth*0283206
name1 Havlíček
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/RO/haindl-0546216.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) This paper introduces an accelerated algorithm for evaluating criteria for comparing the spectral similarity of color, Bidirectional Texture Functions (BTF), and hyperspectral textures. The criteria credibly compare texture pixels by simultaneously considering the pixels with similar values and their mutual ratios. Such a comparison can determine the optimal modeling or acquisition setup by comparing the original data with their synthetic simulations. Other applications of the criteria can be spectral-based texture retrieval or classification. Together with existing alternatives, the suggested methods were extensively tested and compared on a wide variety of color, BTF, and hyper-spectral textures. The methods' performance quality was examined in a long series of specially designed experiments where proposed ones outperform all tested alternatives.
action
ARLID cav_un_auth*0414747
name International Conference on Computational Collective Intelligence 2021 /13./
dates 20210929
mrcbC20-s 20211001
place Kallithea, Rhodes
country GR
RIV BD
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2022
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0323757
cooperation
ARLID cav_un_auth*0414750
name Fakulta managementu, VŠE
institution FM VŠE
country CZ
confidential S
article_num 52
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0546212 Advances in Computational Collective Intelligence Springer International Publishing 2021 Cham 644 655 978-3-030-88113-9 Communications in Computer and Information Science 1463 1865-0929
mrcbU67 Wojtkiewicz Krystian 340
mrcbU67 Treur Jan 340
mrcbU67 Pimenidis Elias 340
mrcbU67 Maleszka Marcin 340