bibtype C - Conference Paper (international conference)
ARLID 0546240
utime 20250123085732.2
mtime 20211005235959.9
SCOPUS 85121685297
WOS 000819455102016
DOI 10.1109/ICIP42928.2021.9506502
title (primary) (eng) Improving Neural Blind Deconvolution
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0546361
ISBN 978-1-6654-4115-5
ISSN 2381-8549
title 2021 IEEE International Conference on Image Processing : Proceedings
page_num 1954-1958
publisher
place Piscataway
name IEEE
year 2021
keyword blind deblurring
keyword SelfDeblur
keyword deep image prior
author (primary)
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/ZOI/kotera-0546240.pdf
cas_special
project
project_id GA20-27939S
agency GA ČR
ARLID cav_un_auth*0391986
abstract (eng) The field of blind image deblurring was for a long time dominated by Maximum-A-Posteriori methods seeking the optimal pair of sharp image--blur of a suitable functional. Recently, learning-based methods, especially those based on deep convolutional neural networks, are proving effective and are receiving increasing attention by the research community. In 2020, Ren~et~al. proposed a deblurring method called SelfDeblur which combines the model-driven approach of traditional MAP methods and the generative power of neural nets. The method is capable of producing very high-quality results, yet it inherits some problems of MAP methods, especially possible convergence to a wrong local optimum. In this paper we propose several easy-to-implement modifications of SelfDeblur, namely suitable initialization, multiscale processing, and regularization, that improve the average performance of the original method and decrease the probability of failure.
action
ARLID cav_un_auth*0414773
name IEEE International Conference on Image Processing (ICIP) 2021
dates 20210919
mrcbC20-s 20210922
place Anchorage
country US
RIV JD
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2022
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0322888
confidential S
arlyear 2021
mrcbU14 85121685297 SCOPUS
mrcbU24 PUBMED
mrcbU34 000819455102016 WOS
mrcbU63 cav_un_epca*0546361 2021 IEEE International Conference on Image Processing : Proceedings IEEE 2021 Piscataway 1954 1958 978-1-6654-4115-5 2381-8549