bibtype C - Conference Paper (international conference)
ARLID 0546470
utime 20240111141056.2
mtime 20211012235959.9
DOI 10.1109/ICCV48922.2021.00352
title (primary) (eng) FMODetect: Robust Detection of Fast Moving Objects
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0546469
ISBN 978-1-6654-2812-5
ISSN Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
title Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
page_num 3541-3549
publisher
place Piscataway
name IEEE
year 2021
keyword tracking
keyword convolutional neural network
keyword deconvolution
author (primary)
ARLID cav_un_auth*0352947
name1 Rozumnyi
name2 D.
country CZ
author
ARLID cav_un_auth*0075799
name1 Matas
name2 J.
country CZ
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0415064
name1 Pollefeys
name2 M.
country CH
author
ARLID cav_un_auth*0415065
name1 Oswald
name2 M.R.
country CH
source
source_type pdf
url http://library.utia.cas.cz/separaty/2021/ZOI/sroubek-0546470.pdf
source_size 5.5MB
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
abstract (eng) We propose the first learning-based approach for fast moving objects detection. Such objects are highly blurred and move over large distances within one video frame. Fast\nmoving objects are associated with a deblurring and matting problem, also called deblatting. We show that the separation of deblatting into consecutive matting and deblurring allows achieving real-time performance, i.e. an order of magnitude speed-up, and thus enabling new classes of application. The proposed method detects fast moving objects as a truncated distance function to the trajectory by learning from synthetic data. For the sharp appearance estimation and accurate trajectory estimation, we propose a matting and fitting network that estimates the blurred appearance without background, followed by an energy minimization based deblurring. The state-of-the-art methods are outperformed in terms of recall, precision, trajectory estimation, and sharp appearance reconstruction. Compared to other methods, such as deblatting, the inference is of several orders of magnitude faster and allows applications such as real-time fast moving object detection and retrieval in large video collections.\n
action
ARLID cav_un_auth*0415066
name International Conference on Computer Vision (ICCV) 2021
dates 20211011
mrcbC20-s 20211017
place Piscataway (on-line)
country US
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2022
num_of_auth 5
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0323758
cooperation
ARLID cav_un_auth*0376357
name ČVUT Fakulta elektrotechnická
institution ČVUT FEL
country CZ
cooperation
ARLID cav_un_auth*0376740
name ETH Zürich
confidential S
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf 5.5MB
mrcbU63 cav_un_epca*0546469 Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) IEEE 2021 Piscataway 3541 3549 978-1-6654-2812-5 2380-7504