bibtype J - Journal Article
ARLID 0546694
utime 20230418204308.9
mtime 20211015235959.9
SCOPUS 85116552764
WOS 000705729800001
DOI 10.1007/s11634-021-00471-6
title (primary) (eng) The minimum weighted covariance determinant estimator for high-dimensional data
specification
page_count 23 s.
media_type P
serial
ARLID cav_un_epca*0361698
ISSN 1862-5347
title Advances in Data Analysis and Classification
volume_id 16
volume 4 (2022)
page_num 977-999
publisher
name Springer
keyword High-dimensional data
keyword Regularization
keyword Robust estimation
keyword Implicit weighting
keyword Scatter matrix
author (primary)
ARLID cav_un_auth*0345793
name1 Kalina
name2 Jan
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0387590
name1 Tichavský
name2 J.
country CZ
source
url http://library.utia.cas.cz/separaty/2021/SI/kalina-0546694.pdf
source
url https://link.springer.com/article/10.1007/s11634-021-00471-6
cas_special
project
project_id GA21-05325S
agency GA ČR
ARLID cav_un_auth*0409039
project
project_id GA19-05704S
agency GA ČR
country CZ
ARLID cav_un_auth*0375756
abstract (eng) In a variety of diverse applications, it is very desirable to perform a robust analysis of high-dimensional measurements without being harmed by the presence of a possibly larger percentage of outlying measurements. The minimum weighted covariance determinant (MWCD) estimator, based on implicit weights assigned to individual observations, represents a promising and flexible extension of the popular minimum covariance determinant (MCD) estimator of the expectation and scatter matrix of mlutivariate data. In this work, a regularized version of the MWCD denoted as the minimum regularized weighted covariance determinant (MRWCD) estimator is proposed. At the same time, it is accompanied by an outlier detection procedure. The novel MRWCD estimator is able to outperform other available robust estimators in several simulation scenarios, especially in estimating the scatter matrix of contaminated high-dimensional data.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0323102
confidential S
mrcbC91 C
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.943
mrcbT16-s 0.853
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2022
mrcbU14 85116552764 SCOPUS
mrcbU24 PUBMED
mrcbU34 000705729800001 WOS
mrcbU63 cav_un_epca*0361698 Advances in Data Analysis and Classification 1862-5347 1862-5355 Roč. 16 č. 4 2022 977 999 Springer