bibtype J - Journal Article
ARLID 0546728
utime 20240903170552.6
mtime 20211015235959.9
SCOPUS 85117380337
WOS 000700613800004
DOI 10.1214/21-AOP1507
title (primary) (eng) Frozen percolation on the binary tree is nonendogenous
specification
page_count 45 s.
media_type P
serial
ARLID cav_un_epca*0250815
ISSN 0091-1798
title Annals of Probability
volume_id 49
volume 5 (2021)
page_num 2272-2316
publisher
name Institute of Mathematical Statistics
keyword frozen percolation
keyword self-organised criticality
keyword recursive distributional equation
keyword recursive tree process
keyword endogeny
keyword near-critical percolation
keyword branching process
author (primary)
ARLID cav_un_auth*0415461
name1 Ráth
name2 B.
country HU
share 34
author
ARLID cav_un_auth*0217893
name1 Swart
name2 Jan M.
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
share 33
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0415462
name1 Terpai
name2 T.
country HU
share 33
source
url http://library.utia.cas.cz/separaty/2021/SI/swart-0546728.pdf
source
url https://projecteuclid.org/journals/annals-of-probability/volume-49/issue-5/Frozen-percolation-on-the-binary-tree-is-nonendogenous/10.1214/21-AOP1507.short
cas_special
project
project_id GA19-07140S
agency GA ČR
country CZ
ARLID cav_un_auth*0385132
abstract (eng) In frozen percolation, i.i.d. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster, in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477) showed that such a process can be constructed on the infinite 3-regular tree and asked whether the event that a given edge freezes is a measurable function of the activation times assigned to all edges. We give a negative answer to this question, or, using an equivalent formulation and terminology introduced by Aldous and Bandyopadhyay (Ann. Appl. Probab. 15 (2005) 1047–1110), we show that the recursive tree process associated with frozen percolation on the oriented binary tree is nonendogenous. An essential role in our proofs is played by a frozen percolation process on a continuous-time binary Galton–Watson tree that has nice scale invariant properties.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2022
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0323442
cooperation
ARLID cav_un_auth*0320137
name Budapest University of Technology and Economics
institution BME
country HU
cooperation
ARLID cav_un_auth*0415463
name Eötvös Loránd University
institution ELTE
country HU
confidential S
mrcbC86 3+4 Article Statistics Probability
mrcbC91 C
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 2.718
mrcbT16-s 2.955
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2021
mrcbU14 85117380337 SCOPUS
mrcbU24 PUBMED
mrcbU34 000700613800004 WOS
mrcbU63 cav_un_epca*0250815 Annals of Probability 0091-1798 Roč. 49 č. 5 2021 2272 2316 Institute of Mathematical Statistics