bibtype J - Journal Article
ARLID 0548672
utime 20230418204410.0
mtime 20211125235959.9
SCOPUS 85110438127
WOS 000677493500009
DOI 10.1038/s41598-021-93636-4
title (primary) (eng) Motion blur invariant for estimating motion parameters of medical ultrasound images
specification
page_count 13 s.
serial
ARLID cav_un_epca*0386594
ISSN 2045-2322
title Scientific Reports
volume_id 11
publisher
name Nature Publishing Group
keyword motion blur
keyword estimating motion parameters
keyword medical ultrasound imagesBarm
author (primary)
ARLID cav_un_auth*0347018
name1 Honarvar Shakibaei Asli
name2 Barmak
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country MY
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0223368
name1 Zhao
name2 Y.
country CN
author
ARLID cav_un_auth*0377796
name1 Erkoyuncu
name2 J. A.
country GB
source
url http://library.utia.cas.cz/separaty/2021/ZOI/honarvar-0548672.pdf
source
url https://www.nature.com/articles/s41598-021-93636-4
cas_special
project
project_id GJ18-26018Y
agency GA ČR
ARLID cav_un_auth*0360230
abstract (eng) High-quality medical ultrasound imaging is definitely concerning motion blur, while medical image analysis requires motionless and accurate data acquired by sonographers. The main idea of this paper is to establish some motion blur invariant in both frequency and moment domain to estimate the motion parameters of ultrasound images. We propose a discrete model of point spread function of motion blur convolution based on the Dirac delta function to simplify the analysis of motion invariant in frequency and moment domain. This model paves the way for estimating the motion angle and length in terms of the proposed invariant features. In this research, the performance of the proposed schemes is compared with other state-of-the-art existing methods of image deblurring. The experimental study performs using fetal phantom images and clinical fetal ultrasound images as well as breast scans. Moreover, to validate the accuracy of the proposed experimental framework, we apply two image quality assessment methods as no-reference and full-reference to show the robustness of the proposed algorithms compared to the well-known approaches.
result_subspec WOS
RIV JD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2022
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0324805
mrcbC61 1
confidential S
article_num 14312
mrcbC86 3+4 Article Multidisciplinary Sciences
mrcbC91 A
mrcbT16-e MULTIDISCIPLINARYSCIENCES
mrcbT16-j 1.208
mrcbT16-s 1.005
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2021
mrcbU14 85110438127 SCOPUS
mrcbU24 PUBMED
mrcbU34 000677493500009 WOS
mrcbU63 cav_un_epca*0386594 Scientific Reports 2045-2322 2045-2322 Roč. 11 č. 1 2021 Nature Publishing Group