bibtype C - Conference Paper (international conference)
ARLID 0549008
utime 20250123094241.3
mtime 20211202235959.9
SCOPUS 85114404289
WOS 000853014000021
DOI 10.1109/ISSC52156.2021.9467857
title (primary) (eng) Robust Bayesian Transfer Learning between Autoregressive Inference Tasks
specification
page_count 6 s.
media_type E
serial
ARLID cav_un_epca*0549104
ISBN 978-1-6654-3429-4
title Proceedings of the 32nd Irish Signals and Systems Conference (ISSC) 2021
publisher
place Piscataway
name IEEE
year 2021
keyword autoregressive (AR) model
keyword Bayesian transfer learning
keyword data-predictive transfer
keyword FPD
keyword robust transfer
author (primary)
ARLID cav_un_auth*0403479
name1 Barber
name2 Alec
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
country IE
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0370768
name1 Quinn
name2 Anthony
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
country IE
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/AS/quinn-0549008.pdf
cas_special
project
project_id GA18-15970S
agency GA ČR
country CZ
ARLID cav_un_auth*0362986
abstract (eng) Bayesian transfer learning typically relies on a complete stochastic dependence specification between source and target learners. We advocate a solution to the Bayesian transfer learning paradigm which adopts Fully Probabilistic Design (FPD) to search for an optimal choice of distribution constrained by probabilistic source knowledge. Using this optimal decision-making strategy, an algorithm for accepting source knowledge is identified but is found to be effectively insensitive to source uncertainty. Therefore, we propose an adaptation of the FPD framework which results in a robust transfer learning algorithm.Experimental evidence gathered via synthetic data shows enhanced performance when employing both optimal algorithms in a low source data predictor variance regime. In a high source data predictor variance setting, only our adapted FPD-optimal algorithm achieves robustness.
action
ARLID cav_un_auth*0418083
name Irish Signals and Systems Conference (ISSC 2021) /23./
dates 20210610
mrcbC20-s 20210611
place Athlone
country IE
RIV BD
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2022
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0325124
mrcbC61 1
cooperation
ARLID cav_un_auth*0418084
name Department of Electronic and Electrical Engineering Trinity College Dublin, the University of Dublin
country IE
confidential S
article_num 9467857
arlyear 2021
mrcbU14 85114404289 SCOPUS
mrcbU24 PUBMED
mrcbU34 000853014000021 WOS
mrcbU63 cav_un_epca*0549104 Proceedings of the 32nd Irish Signals and Systems Conference (ISSC) 2021 IEEE 2021 Piscataway 978-1-6654-3429-4