bibtype C - Conference Paper (international conference)
ARLID 0549011
utime 20240103230257.7
mtime 20211202235959.9
title (primary) (eng) Trust Estimation in Forecasting-Based Knowledge Fusion
specification
page_count 16 s.
media_type E
serial
ARLID cav_un_epca*0549010
title Proceedings of BNAIC/BeneLearn 2021
page_num 363-378
publisher
place Luxembourg
name University of Luxembourg
year 2021
editor
name1 Leiva
name2 Luis A.
editor
name1 Pruski
name2 Cédric
editor
name1 Markovich
name2 Réka
editor
name1 Najjar
name2 Amro
editor
name1 Schommer
name2 Cristoph
keyword Trust
keyword Knowledge sharing
keyword Forecasting
keyword Fusion
keyword Decision making
keyword Bayesianism
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0418093
name1 Karlík
name2 Daniel
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2021/AS/karny-0549011.pdf
cas_special
project
project_id CA 16228
agency COST (European Cooperation in Science and Technology)
country XE
ARLID cav_un_auth*0389414
project
project_id LTC18075
agency GA MŠk
country CZ
ARLID cav_un_auth*0372050
abstract (eng) Inference and decision making (DM) are ultimate goals of the artificialintelligence use. Complexity of DM tasks is the main barrier of their efficient solutions. Complex tasks are solved by dividing them among cooperating agents. This requires a knowledge fusion at a solution stage. It always has to cope with uncertainty. The used Bayesianism quantifies the uncertain knowledge by a probability density (pd) of modelled variables. The knowledge accumulation evolves the posterior pd of a parameter in the parametric model of observations. Bayes’rule updates the posterior pd. It provides a lossless compression of the knowledge in the observed data. An extended Bayes’ rule enables the use of knowledge coded in a forecaster of the modelled observations supplied by an agent’sneighbour. This rule exploits a weight expressing the trust into the forecaster. The paper offers yet-missing, algorithmic, data-based choice of this weight. It applies Bayesian estimation while assuming an invariant trust weight. Simulated examples illustrate behaviour of the resulting algorithm. They inspect its sensitivity to violation of the assumed credibility invariance. This prepares solutions coping with volatile knowledge sources.
action
ARLID cav_un_auth*0418094
name Benelux Conference on Artificial Intelligence and 30th Belgian-Dutch Conference on Machine Learning 2021 /33./
dates 20211110
mrcbC20-s 20211112
place Belval, Esch-sur-Alzette
country LU
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2022
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0325137
confidential S
arlyear 2021
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0549010 Proceedings of BNAIC/BeneLearn 2021 University of Luxembourg 2021 Luxembourg 363 378
mrcbU67 Leiva Luis A. 340
mrcbU67 Pruski Cédric 340
mrcbU67 Markovich Réka 340
mrcbU67 Najjar Amro 340
mrcbU67 Schommer Cristoph 340