bibtype |
J -
Journal Article
|
ARLID |
0551315 |
utime |
20230418231854.2 |
mtime |
20220111235959.9 |
SCOPUS |
85104824454 |
WOS |
000641023800008 |
DOI |
10.1556/012.2021.58.1.1489 |
title
(primary) (eng) |
Sticky polymatroids on at most five elements |
specification |
page_count |
11 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0255737 |
ISSN |
0081-6906 |
title
|
Studia Scientiarum Mathematicarum Hungarica |
volume_id |
58 |
volume |
1 (2021) |
page_num |
136-146 |
publisher |
|
|
keyword |
polymatroid |
keyword |
sticky polymatroid conjecture |
keyword |
modular cut |
author
(primary) |
ARLID |
cav_un_auth*0398469 |
name1 |
Csirmaz |
name2 |
Laszlo |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
country |
HU |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA19-04579S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0380558 |
|
abstract
(eng) |
The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2022 |
num_of_auth |
1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0326886 |
confidential |
S |
mrcbC86 |
3+4 Article Mathematics |
mrcbC91 |
C |
mrcbT16-e |
MATHEMATICS |
mrcbT16-j |
0.312 |
mrcbT16-s |
0.265 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q4 |
arlyear |
2021 |
mrcbU14 |
85104824454 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000641023800008 WOS |
mrcbU63 |
cav_un_epca*0255737 Studia Scientiarum Mathematicarum Hungarica 0081-6906 1588-2896 Roč. 58 č. 1 2021 136 146 Akadémiai Kiadó |
|