bibtype J - Journal Article
ARLID 0551315
utime 20230418231854.2
mtime 20220111235959.9
SCOPUS 85104824454
WOS 000641023800008
DOI 10.1556/012.2021.58.1.1489
title (primary) (eng) Sticky polymatroids on at most five elements
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0255737
ISSN 0081-6906
title Studia Scientiarum Mathematicarum Hungarica
volume_id 58
volume 1 (2021)
page_num 136-146
publisher
name Akadémiai Kiadó
keyword polymatroid
keyword sticky polymatroid conjecture
keyword modular cut
author (primary)
ARLID cav_un_auth*0398469
name1 Csirmaz
name2 Laszlo
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country HU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/MTR/csirmaz-0551315.pdf
source
url https://akjournals.com/view/journals/012/58/1/article-p136.xml
cas_special
project
project_id GA19-04579S
agency GA ČR
country CZ
ARLID cav_un_auth*0380558
abstract (eng) The sticky polymatroid conjecture states that any two extensions of the polymatroid have an amalgam if and only if the polymatroid has no non-modular pairs of flats. We show that the conjecture holds for polymatroids on five or less elements.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2022
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0326886
confidential S
mrcbC86 3+4 Article Mathematics
mrcbC91 C
mrcbT16-e MATHEMATICS
mrcbT16-j 0.312
mrcbT16-s 0.265
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2021
mrcbU14 85104824454 SCOPUS
mrcbU24 PUBMED
mrcbU34 000641023800008 WOS
mrcbU63 cav_un_epca*0255737 Studia Scientiarum Mathematicarum Hungarica 0081-6906 1588-2896 Roč. 58 č. 1 2021 136 146 Akadémiai Kiadó