bibtype J - Journal Article
ARLID 0551866
utime 20230418204528.9
mtime 20220117235959.9
SCOPUS 85121331364
WOS 000728657100001
DOI 10.1080/10556788.2021.1965601
title (primary) (eng) General framework for binary classification on top samples
specification
page_count 32 s.
media_type P
serial
ARLID cav_un_epca*0254588
ISSN 1055-6788
title Optimization Methods & Software
volume_id 37
volume 5 (2022)
page_num 1636-1667
publisher
name Taylor & Francis
keyword general framework
keyword classification
keyword ranking
keyword accuracy at the top
keyword Neyman–Pearson
keyword Pat&Mat
author (primary)
ARLID cav_un_auth*0313213
name1 Adam
name2 L.
country CZ
author
ARLID cav_un_auth*0422257
name1 Mácha
name2 V.
country CZ
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0307300
name1 Pevný
name2 T.
country CZ
source
url http://library.utia.cas.cz/separaty/2022/AS/smidl-0551866.pdf
source
url https://www.tandfonline.com/doi/full/10.1080/10556788.2021.1965601
cas_special
project
project_id GA18-21409S
agency GA ČR
ARLID cav_un_auth*0374053
abstract (eng) Many binary classification problems minimize misclassification above (or below) a threshold. We show that instances of ranking problems, accuracy at the top, or hypothesis testing may be written in this form. We propose a general framework to handle these classes of problems and show which formulations (both known and newly proposed) fall into this framework. We provide a theoretical analysis of this framework and mention selected possible pitfalls the formulations may encounter. We show the convergence of the stochastic gradient descent for selected formulations even though the gradient estimate is inherently biased. We suggest several numerical improvements, including the implicit derivative and stochastic gradient descent. We provide an extensive numerical study.
result_subspec WOS
RIV BC
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0337818
confidential S
mrcbC91 A
mrcbT16-e COMPUTERSCIENCESOFTWAREENGINEERING|MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 1.039
mrcbT16-s 1.079
mrcbT16-D Q1
mrcbT16-E Q2
arlyear 2022
mrcbU14 85121331364 SCOPUS
mrcbU24 PUBMED
mrcbU34 000728657100001 WOS
mrcbU63 cav_un_epca*0254588 Optimization Methods & Software 1055-6788 1029-4937 Roč. 37 č. 5 2022 1636 1667 Taylor & Francis