bibtype J - Journal Article
ARLID 0553375
utime 20220321114801.6
mtime 20220211235959.9
SCOPUS 85117588635
WOS 000711834400009
DOI 10.1016/j.patcog.2021.108313
title (primary) (eng) Systematic generation of moment invariant bases for 2D and 3D tensor fields
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0257388
ISSN 0031-3203
title Pattern Recognition
volume_id 123
publisher
name Elsevier
keyword Pattern detection
keyword Rotation invariant
keyword Moment invariants
keyword Generator approach
keyword Basis
keyword Flexible
keyword Vector
keyword Tensor
author (primary)
ARLID cav_un_auth*0349350
name1 Bujack
name2 R.
country US
garant K
author
ARLID cav_un_auth*0202842
name1 Zhang
name2 X.
country US
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0424786
name1 Rogers
name2 D.
country US
source
url http://library.utia.cas.cz/separaty/2022/ZOI/suk-0553375.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0031320321004933
cas_special
project
project_id GA18-07247S
agency GA ČR
ARLID cav_un_auth*0360229
abstract (eng) Moment invariants have been successfully applied to pattern detection tasks in 2D and 3D scalar, vector, and matrix valued data. However so far no flexible basis of invariants exists, i.e., no set that is optimal in the sense that it is complete and independent for every input pattern. In this paper, we prove that a basis of moment invariants can be generated that consists of tensor contractions of not more than two different moment tensors each under the conjecture of the set of all possible tensor contractions to be complete. This result allows us to derive the first generator algorithm that produces flexible bases of moment invariants with respect to orthogonal transformations by selecting a single non-zero moment to pair with all others in these two-factor products. Since at least one non-zero moment can be found in every non-zero pattern, this approach always generates a complete set of descriptors.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2022
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0328730
mrcbC61 1
cooperation
ARLID cav_un_auth*0312944
name Los Alamos National Laboratory
country US
confidential S
article_num 108313
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.765
mrcbT16-s 2.085
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2022
mrcbU14 85117588635 SCOPUS
mrcbU24 PUBMED
mrcbU34 000711834400009 WOS
mrcbU63 cav_un_epca*0257388 Pattern Recognition 0031-3203 1873-5142 Roč. 123 č. 1 2022 Elsevier