bibtype C - Conference Paper (international conference)
ARLID 0555172
utime 20230316104755.5
mtime 20220309235959.9
SCOPUS 85126538632
WOS 000786448900001
DOI 10.1007/978-3-030-98018-4_1
title (primary) (eng) Measuring Quality of Belief Function Approximations
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0555171
ISBN 978-3-030-98017-7
ISSN 0302-9743
title Integrated Uncertainty in Knowledge Modelling and Decision Making
page_num 3-15
publisher
place Cham
name Springer
year 2022
editor
name1 Honda
name2 Katsuhiro
editor
name1 Entani
name2 Tomoe
editor
name1 Ubukata
name2 Seiki
editor
name1 Huynh
name2 Van-Nam
editor
name1 Inuiguchi
name2 Masahiro
keyword Belief functions
keyword Divergence
keyword Approximation
keyword Compositional models
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/MTR/jirousek-0555172.pdf
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0380559
abstract (eng) Because of the high computational complexity of the respective procedures, the application of belief-function theory to problems of practice is possible only when the considered belief functions are approximated in an efficient way. Not all measures of similarity/dissimilarity are felicitous to measure the quality of such approximations. The paper presents results from a pilot study that tries to detect the divergences suitable for this purpose.
action
ARLID cav_un_auth*0426364
name International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making 2022 /9./
dates 20220318
mrcbC20-s 20220319
place Ishikawa
country JP
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0330288
confidential S
article_num 1
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Management
arlyear 2022
mrcbU14 85126538632 SCOPUS
mrcbU24 PUBMED
mrcbU34 000786448900001 WOS
mrcbU63 cav_un_epca*0555171 Integrated Uncertainty in Knowledge Modelling and Decision Making Springer 2022 Cham 3 15 978-3-030-98017-7 Lecture Notes in Computer Science 13199 0302-9743 1611-3349
mrcbU67 Honda Katsuhiro 340
mrcbU67 Entani Tomoe 340
mrcbU67 Ubukata Seiki 340
mrcbU67 Huynh Van-Nam 340
mrcbU67 Inuiguchi Masahiro 340