bibtype J - Journal Article
ARLID 0556428
utime 20250310142432.1
mtime 20220406235959.9
SCOPUS 85127517743
WOS 000797650300001
DOI 10.1016/j.automatica.2022.110269
title (primary) (eng) Fully probabilistic design of strategies with estimator
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0256218
ISSN 0005-1098
title Automatica
volume_id 141
publisher
name Elsevier
keyword Bayes methods
keyword closed loop systems
keyword decision making
keyword dynamic programming
keyword estimation
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/AS/karny-0556428.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0005109822001145?via%3Dihub
cas_special
project
project_id LTC18075
agency GA MŠk
country CZ
ARLID cav_un_auth*0372050
abstract (eng) The axiomatic fully probabilistic design (FDP) of decision strategies strictly extends Bayesian decision making (DM) theory. FPD also models the closed decision loop by a joint probability density (pd) of all inspected random variables, referred as behaviour. FPD expresses DM aims via an ideal pd of behaviours, unlike the usual DM. Its optimal strategy minimises Kullback–Leibler divergence (KLD) of the joint, strategy-dependent, pd of behaviours to its ideal twin. A range of FPD results confirmed its theoretical and practical strength. Curiously, no guide exists how to select a specific ideal pd for an estimator design. The paper offers it. It advocates the use of the closed-loop state notion and generalises dynamic programming so that FPD is its special case. Primarily, it provides an explorative optimised feedback that ‘‘naturally’’ diminishes exploration (gained in learning) as the learning progresses.
result_subspec WOS
RIV BB
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2023
num_of_auth 1
mrcbC52 4 A sml 4as 2rh 20231122150503.7 2 R hod 20250310142401.4 20250310142432.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0330841
mrcbC61 1
confidential S
contract
name Publishing Agreement
date 20220315
article_num 110269
mrcbC86 3+4 Article Automation Control Systems|Engineering Electrical Electronic
mrcbC91 C
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 2.494
mrcbT16-s 3.657
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2022
mrcbTft \nSoubory v repozitáři: karny-556428.pdf, karny-0556428-AUT110269.html
mrcbU14 85127517743 SCOPUS
mrcbU24 PUBMED
mrcbU34 000797650300001 WOS
mrcbU63 cav_un_epca*0256218 Automatica 0005-1098 1873-2836 Roč. 141 č. 1 2022 Elsevier