bibtype |
J -
Journal Article
|
ARLID |
0556599 |
utime |
20230323094128.4 |
mtime |
20220419235959.9 |
SCOPUS |
85127936125 |
WOS |
000795956700001 |
DOI |
10.1016/j.jde.2022.04.003 |
title
(primary) (eng) |
Large deviations for (1+1)-dimensional stochastic geometric wave equation |
specification |
page_count |
69 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256945 |
ISSN |
0022-0396 |
title
|
Journal of Differential Equations |
volume_id |
325 |
volume |
1 (2022) |
page_num |
1-69 |
publisher |
|
|
keyword |
Large deviations |
keyword |
Stochastic geometric wave equation |
keyword |
Riemannian manifold |
author
(primary) |
ARLID |
cav_un_auth*0202382 |
name1 |
Brzezniak |
name2 |
Z. |
country |
GB |
|
author
|
ARLID |
cav_un_auth*0080014 |
name1 |
Goldys |
name2 |
B. |
country |
AU |
|
author
|
ARLID |
cav_un_auth*0260292 |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0428713 |
name1 |
Rana |
name2 |
N. |
country |
DE |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA19-07140S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0385132 |
|
abstract
(eng) |
We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2023 |
num_of_auth |
4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0330845 |
confidential |
S |
mrcbC86 |
n.a. Article Mathematics |
mrcbC91 |
C |
mrcbT16-e |
MATHEMATICS |
mrcbT16-j |
1.416 |
mrcbT16-s |
1.983 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q1* |
arlyear |
2022 |
mrcbU14 |
85127936125 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000795956700001 WOS |
mrcbU63 |
cav_un_epca*0256945 Journal of Differential Equations 0022-0396 1090-2732 Roč. 325 č. 1 2022 1 69 Elsevier |
|