bibtype J - Journal Article
ARLID 0556599
utime 20230323094128.4
mtime 20220419235959.9
SCOPUS 85127936125
WOS 000795956700001
DOI 10.1016/j.jde.2022.04.003
title (primary) (eng) Large deviations for (1+1)-dimensional stochastic geometric wave equation
specification
page_count 69 s.
media_type P
serial
ARLID cav_un_epca*0256945
ISSN 0022-0396
title Journal of Differential Equations
volume_id 325
volume 1 (2022)
page_num 1-69
publisher
name Elsevier
keyword Large deviations
keyword Stochastic geometric wave equation
keyword Riemannian manifold
author (primary)
ARLID cav_un_auth*0202382
name1 Brzezniak
name2 Z.
country GB
author
ARLID cav_un_auth*0080014
name1 Goldys
name2 B.
country AU
author
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0428713
name1 Rana
name2 N.
country DE
source
url http://library.utia.cas.cz/separaty/2022/SI/ondrejat-0556599.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0022039622002406?via%3Dihub
cas_special
project
project_id GA19-07140S
agency GA ČR
country CZ
ARLID cav_un_auth*0385132
abstract (eng) We consider stochastic wave map equation on real line with solutions taking values in a d-dimensional compact Riemannian manifold. We show first that this equation has unique, global, strong in PDE sense, solution in local Sobolev spaces. The main result of the paper is a proof of the Large Deviations Principle for solutions in the case of vanishing noise.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0330845
confidential S
mrcbC86 n.a. Article Mathematics
mrcbC91 C
mrcbT16-e MATHEMATICS
mrcbT16-j 1.416
mrcbT16-s 1.983
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2022
mrcbU14 85127936125 SCOPUS
mrcbU24 PUBMED
mrcbU34 000795956700001 WOS
mrcbU63 cav_un_epca*0256945 Journal of Differential Equations 0022-0396 1090-2732 Roč. 325 č. 1 2022 1 69 Elsevier