bibtype C - Conference Paper (international conference)
ARLID 0556726
utime 20231122150515.2
mtime 20220425235959.9
SCOPUS 85127202885
WOS 000893681300061
DOI 10.1007/978-3-030-97549-4_61
title (primary) (eng) Minimization of p-Laplacian via the Finite Element Method in MATLAB
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0556337
ISBN 978-3-030-97548-7
ISSN 0302-9743
title Large-Scale Scientific Computing
page_num 533-540
publisher
place Cham
name Springer
year 2022
editor
name1 Lirkov
name2 I.
editor
name1 Margenov
name2 S.
keyword Finite elements
keyword Energy functional
keyword Trust-region methods
keyword p-Laplace equation
keyword MATLAB code vectorization
author (primary)
ARLID cav_un_auth*0100790
name1 Matonoha
name2 Ctirad
institution UIVT-O
full_dept (cz) Oddělení výpočetní matematiky
full_dept (eng) Department of Computational Mathematics
full_dept Department of Computational Mathematics
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0410335
name1 Moskovka
name2 A.
country CZ
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://dx.doi.org/10.1007/978-3-030-97549-4_61
cas_special
project
project_id 8J21AT001
agency GA MŠk
ARLID cav_un_auth*0413224
project
project_id GA18-03834S
agency GA ČR
ARLID cav_un_auth*0365435
abstract (eng) Minimization of energy functionals is based on a discretization by the finite element method and optimization by the trust-region method. A key tool to an efficient implementation is a local evaluation of the approximated gradients together with sparsity of the resulting Hessian matrix. Vectorization concepts are explained for the p-Laplace problem in one and two space-dimensions.
action
ARLID cav_un_auth*0410336
name LSSC 2021: International Conference on Large-Scale Scientific Computations /13./
dates 20210607
mrcbC20-s 20210611
place Sozopol
country BG
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
num_of_auth 3
mrcbC47 UTIA-B 10000 10100 10102
mrcbC52 4 A 4a 20231122150515.2
inst_support RVO:67985807
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0330880
cooperation
ARLID cav_un_auth*0339298
name UTIA
cooperation
ARLID cav_un_auth*0295079
name Západočeská univerzita v Plzni
institution ZČU
country CZ
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Interdisciplinary Applications|Computer Science Theory Methods|Operations Research Management Science|Mathematics Applied
arlyear 2022
mrcbTft \nSoubory v repozitáři: 0556726-afin.pdf
mrcbU14 85127202885 SCOPUS
mrcbU24 PUBMED
mrcbU34 000893681300061 WOS
mrcbU63 cav_un_epca*0556337 Large-Scale Scientific Computing 978-3-030-97548-7 0302-9743 533 540 Cham Springer 2022 1. Lecture Notes in Computer Science 13127
mrcbU67 Lirkov I. 340
mrcbU67 Margenov S. 340