bibtype |
V -
Research Report
|
ARLID |
0557038 |
utime |
20231214093756.0 |
mtime |
20220503235959.9 |
DOI |
10.1101/2021.05.13.21257139 |
title
(primary) (eng) |
Model-M: An agent-based epidemic model of a middle-sized municipality |
publisher |
|
specification |
|
edition |
name |
bioRxiv |
volume_id |
2021.05.13.21257139 |
|
author
(primary) |
ARLID |
cav_un_auth*0101067 |
name1 |
Berec |
name2 |
Luděk |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept (eng) |
Department of Econometrics |
department (cz) |
E |
department (eng) |
E |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0402615 |
name1 |
Diviák |
name2 |
T. |
country |
GB |
|
author
|
ARLID |
cav_un_auth*0264564 |
name1 |
Kuběna |
name2 |
Aleš Antonín |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0106308 |
name1 |
Levínský |
name2 |
René |
institution |
NHU-N |
fullinstit |
Národohospodářský ústav AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0100794 |
name1 |
Neruda |
name2 |
Roman |
institution |
UIVT-O |
full_dept (cz) |
Oddělení strojového učení |
full_dept |
Department of Machine Learning |
full_dept |
Department of Machine Learning |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0402629 |
name1 |
Suchopárová |
name2 |
Gabriela |
institution |
UIVT-O |
full_dept (cz) |
Oddělení strojového učení |
full_dept |
Department of Machine Learning |
country |
CZ |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0259020 |
name1 |
Šlerka |
name2 |
J. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101206 |
name1 |
Šmíd |
name2 |
Martin |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0417209 |
name1 |
Trnka |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0283215 |
name1 |
Tuček |
name2 |
V. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0231277 |
name1 |
Vidnerová |
name2 |
Petra |
institution |
UIVT-O |
full_dept (cz) |
Oddělení strojového učení |
full_dept |
Department of Machine Learning |
full_dept |
Department of Machine Learning |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0237467 |
name1 |
Zajíček |
name2 |
Milan |
institution |
UTIA-B |
full_dept (cz) |
Výpočetní Středisko |
full_dept |
Computer Centre |
department (cz) |
VS |
department |
VS |
full_dept |
Department of Image Processing |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0417211 |
name1 |
Zapletal |
name2 |
František |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
TL04000282 |
agency |
GA TA ČR |
country |
CZ |
ARLID |
cav_un_auth*0414828 |
|
abstract
(eng) |
This report presents a technical description of our agent-based epidemic model of a particular middle-sized municipality. We have developed a realistic model with 56 thousand inhabitants and 2.7 millions of social contacts. These form a multi-layer social network that serves as a base of our epidemic simulation. The disease is modeled by our extended SEIR model with parameters fitted to real epidemics data for Czech Republic. The model is able to simulate a whole range of non-pharmaceutical interventions on individual level, such as protective measures and physical distancing, testing, contact tracing, isolation and quarantine. The effect of government-issued measures such as contact restrictions in different environments (schools, restaurants, vendors, etc.) can also be simulated. |
reportyear |
2023 |
mrcbC52 |
4 A 4a 20231122150530.7 |
inst_support |
RVO:67985807 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0331145 |
confidential |
S |
arlyear |
2022 |
mrcbTft |
\nSoubory v repozitáři: 0557038-aw.pdf |
mrcbU10 |
2022 |
|