bibtype J - Journal Article
ARLID 0557126
utime 20240903170555.1
mtime 20220505235959.9
SCOPUS 85130701278
WOS 000795530700002
DOI 10.14311/NNW.2022.32.002
title (primary) (eng) Modeling of discrete questionnaire data with dimension reduction
specification
page_count 27 s.
media_type E
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 32
volume 1 (2022)
page_num 15-41
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword questionnaire data analysis
keyword dimension reduction
keyword binomial mixture
keyword recursive Bayesian mixture estimation
keyword accident severity
author (primary)
ARLID cav_un_auth*0412278
name1 Jozová
name2 Šárka
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0330517
name1 Likhonina
name2 Raissa
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2022/ZS/uglickich-0557126.pdf
source
url http://nnw.cz/doi/2022/NNW.2022.32.002.pdf
cas_special
project
project_id 8A19009
agency GA MŠk
country CZ
ARLID cav_un_auth*0385121
abstract (eng) The paper deals with the task of modeling discrete questionnaire data with a reduced dimension of the model. The discrete model dimension is reduced using the construction of local models based on independent binomial mixtures estimated with the help of recursive Bayesian algorithms in the combination with the naive Bayes technique. The main contribution of the paper is a three-phase algorithm of the discrete model dimension reduction, which allows to model high-dimensional questionnaire data with high number of explanatory variables and their possible realizations. The proposed general solution is applied to the traffic accident questionnaire analysis, where it takes the form of the classification of the accident circumstances and prediction of the traffic accident severity using the currently measured discrete data. Results of testing the obtained model on real data and comparison with theoretical counterparts are demonstrated.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0331259
confidential S
mrcbC86 n.a. Article Computer Science Artificial Intelligence
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.165
mrcbT16-s 0.247
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2022
mrcbU14 85130701278 SCOPUS
mrcbU24 PUBMED
mrcbU34 000795530700002 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 32 č. 1 2022 15 41 Ústav informatiky AV ČR, v. v. i.