bibtype V - Research Report
ARLID 0557467
utime 20240111141105.5
mtime 20220518235959.9
title (primary) (eng) Recursive mixture estimation with univariate multimodal Poisson variable
publisher
place Prague
name UTIA AV ČR, v. v. i.,
pub_time 2022
specification
page_count 14 s.
media_type P
edition
name Research Report
volume_id 2394
keyword recursive mixture estimation
keyword mixture of Poisson distributions
keyword clustering and classification
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country RU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2022/ZS/uglickich-0557467.pdf
cas_special
project
project_id 8A19009
agency GA MŠk
country CZ
ARLID cav_un_auth*0385121
abstract (eng) Analysis of count variables described by the Poisson distribution is required in many application fields. Examples of the count variables observed per a time unit can be, e.g., number of customers, passengers, road accidents, Internet traffic packet arrivals, bankruptcies, virus attacks, etc. If the behavior of such a variable exhibits a multimodal character, the problem of clustering and classification of incoming count data arises. This issue can touch, for instance, detecting clusters of the different behavior of drivers in traffic flow analysis as well as cyclists or pedestrians. This work focuses on the model-based clustering of Poisson-distributed count data with the help of the recursive Bayesian estimation of the mixture of Poisson components. The aim of the work is to explain the methodology in details with an illustrative simple example, so that the work is limited to the univariate case and static pointer.
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2023
num_of_auth 2
mrcbC52 4 O 4o 20231122150545.8
permalink http://hdl.handle.net/11104/0331506
confidential S
arlyear 2022
mrcbTft \nSoubory v repozitáři: 0557467.pdf
mrcbU10 2022
mrcbU10 Prague UTIA AV ČR, v.v.i.,
mrcbU56 pdf