bibtype C - Conference Paper (international conference)
ARLID 0558938
utime 20231122150639.2
mtime 20220712235959.9
SCOPUS 85133002397
WOS 000926169100026
DOI 10.1007/978-3-031-08223-8_26
title (primary) (eng) Using a Deep Neural Network in a Relative Risk Model to Estimate Vaccination Protection for COVID-19
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0558941
ISBN 978-3-031-08222-1
ISSN 1865-0929
title Engineering Applications of Neural Networks
part_title 1600
page_num 310-320
publisher
place Cham
name Springer
year 2022
editor
name1 Iliadis
name2 L.
editor
name1 Jayne
name2 Ch.
editor
name1 Tefas
name2 A.
editor
name1 Pimenidis
name2 E.
keyword Deep learning
keyword Risk model
keyword Immunity waning
author (primary)
ARLID cav_un_auth*0402629
name1 Suchopárová
name2 Gabriela
institution UIVT-O
full_dept (cz) Oddělení strojového učení
full_dept (eng) Department of Machine Learning
country CZ
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0231277
name1 Vidnerová
name2 Petra
institution UIVT-O
full_dept (cz) Oddělení strojového učení
full_dept Department of Machine Learning
full_dept Department of Machine Learning
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0100794
name1 Neruda
name2 Roman
institution UIVT-O
full_dept (cz) Oddělení strojového učení
full_dept Department of Machine Learning
full_dept Department of Machine Learning
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101206
name1 Šmíd
name2 Martin
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://dx.doi.org/10.1007/978-3-031-08223-8_26
cas_special
abstract (eng) The proportional hazard Cox model is traditionally used in survival analysis to estimate the effect of several variables on the hazard rate of an event. Recently, neural networks were proposed to improve the flexibility of the Cox model. In this work, we focus on an extension of the Cox model, namely on a non-proportional relative risk model, where the neural network approximates a non-linear time-dependent risk function. We address the issue of the lack of time-varying variables in this model, and to this end, we design a deep neural network model capable of time-varying regression. The target application of our model is the waning of post-vaccination and post-infection immunity in COVID-19. This task setting is challenging due to the presence of multiple time-varying variables and different epidemic intensities at infection times. The advantage of our model is that it enables a fine-grained analysis of risks depending on the time since vaccination and/or infection, all approximated using a single non-linear function. A case study on a data set containing all COVID-19 cases in the Czech Republic until the end of 2021 has been performed. The vaccine effectiveness for different age groups, vaccine types, and the number of doses received was estimated using our model as a function of time. The results are in accordance with previous findings while allowing greater flexibility in the analysis due to a continuous representation of the waning function.
action
ARLID cav_un_auth*0432780
name EANN 2022: International Conference on Engineering Applications of Neural Networks /23./
dates 20220617
mrcbC20-s 20220620
place Chersonissos / Virtual
country GR
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2023
num_of_auth 4
mrcbC47 UTIA-B 10000 10100 10103
mrcbC52 4 A 4a 20231122150639.2
inst_support RVO:67985807
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0332424
cooperation
ARLID cav_un_auth*0432779
name Centre for Modelling of Biological and Social Processes, Prague
country CZ
cooperation
ARLID cav_un_auth*0340903
name Matematicko-fyzikalni fakulta UK
institution MFF UK
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Engineering Multidisciplinary
arlyear 2022
mrcbTft \nSoubory v repozitáři: 0558938-a.pdf
mrcbU14 85133002397 SCOPUS
mrcbU24 PUBMED
mrcbU34 000926169100026 WOS
mrcbU63 cav_un_epca*0558941 Engineering Applications of Neural Networks Springer 2022 Cham 310 320 978-3-031-08222-1 Communications in Computer and Information Science 1600 1865-0929
mrcbU67 Iliadis L. 340
mrcbU67 Jayne Ch. 340
mrcbU67 Tefas A. 340
mrcbU67 Pimenidis E. 340