bibtype J - Journal Article
ARLID 0559705
utime 20230418205015.6
mtime 20220805235959.9
SCOPUS 85130886800
WOS 000801845900001
DOI 10.3390/axioms11050240
title (primary) (eng) Fuzzy Caratheodory's Theorem and Outer *-Fuzzy Measure
specification
page_count 10 s.
media_type E
serial
ARLID cav_un_epca*0559704
ISSN AXIOMS
title AXIOMS
volume_id 11
publisher
name MDPI
keyword ∗-outer fuzzy measure
keyword t-norm
keyword ∗-fuzzy premeasure
keyword Caratheodory’s theorem
author (primary)
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 25
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0348246
name1 Li
name2 Ch.
country CN
share 25
author
ARLID cav_un_auth*0408156
name1 Ghaffari
name2 A.
country IR
share 25
author
ARLID cav_un_auth*0434048
name1 Saadati
name2 R.
country IR
share 25
source
url http://library.utia.cas.cz/separaty/2022/E/mesiar-0559705.pdf
source
url https://www.mdpi.com/2075-1680/11/5/240
cas_special
abstract (eng) The goal of this paper is to introduce two new concepts ∗-fuzzy premeasure and outer ∗-fuzzy measure, and to further prove some properties, such as Caratheodory’s Theorem, as well as the unique extension of ∗-fuzzy premeasure. This theorem is remarkable for it allows one to construct a ∗-fuzzy measure by first defining it on a small algebra of sets, where its ∗-additivity could be easy to verify, and then this theorem guarantees its extension to a sigma-algebra.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0333420
confidential S
article_num 240
mrcbC86 n.a. Article Mathematics Applied
mrcbC91 A
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.322
mrcbT16-s 0.388
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2022
mrcbU14 85130886800 SCOPUS
mrcbU24 PUBMED
mrcbU34 000801845900001 WOS
mrcbU63 cav_un_epca*0559704 AXIOMS 2075-1680 Roč. 11 č. 5 2022 MDPI