bibtype C - Conference Paper (international conference)
ARLID 0561324
utime 20240111141109.3
mtime 20220920235959.9
title (primary) (eng) Learning Noisy-Or Networks with an Application in Linguistics
specification
page_count 12 s.
media_type E
serial
ARLID cav_un_epca*0561323
ISSN Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models
title Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models
page_num 277-288
publisher
place Almerı́a
name PMLR
year 2022
editor
name1 Salmerón
name2 Antonio
editor
name1 Rumí
name2 Rafael
keyword Bayesian networks
keyword Learning Bayesian networks
keyword Noisy-or model
keyword Applications of Bayesian networks
keyword Linguistics
keyword Loanwords
author (primary)
ARLID cav_un_auth*0414315
name1 Kratochvíl
name2 F.
country CZ
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
share 33
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
share 33
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type online
url http://library.utia.cas.cz/separaty/2022/MTR/kratochvil-0561324.pdf
cas_special
project
project_id GA20-18407S
agency GA ČR
ARLID cav_un_auth*0397557
abstract (eng) In this paper we discuss the issue of learning Bayesian networks whose conditional probability tables (CPTs) are either noisy-or models or general CPTs. We refer to these models as Mixed Noisy-Or Bayesian Networks. In order to learn the structure of such Bayesian networks we modify the Bayesian Information Criteria (BIC) used for general Bayesian networks so that it reflects the number of parameters of a noisy-or model. We prove the log-likelihood function of a noisy-or model has a unique maximum and adapt the EM-learning method for leaky noisy-or models. We evaluate the proposed approach on synthetic data where it performs substantially better than general BNs. We apply this approach also to a problem from the domain of linguistics. We use Mixed Noisy-Or Bayesian Networks to model spread of loanwords in the South-East Asia Archipelago. We perform numerical experiments in which we compare prediction ability of general Bayesian Networks with Mixed Noisy-Or Bayesian Networks.
action
ARLID cav_un_auth*0436551
name International Conference on Probabilistic Graphical Models
dates 20221005
mrcbC20-s 20221007
place Almería
country ES
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2023
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0334054
cooperation
ARLID cav_un_auth*0320502
name Univerzita Paleckého v Olomouci, Filozofická fakulta
institution UPOL
country CZ
confidential S
arlyear 2022
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 online
mrcbU63 cav_un_epca*0561323 Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models PMLR 2022 Almerı́a 277 288 2640-3498
mrcbU67 Salmerón Antonio 340
mrcbU67 Rumí Rafael 340