bibtype J - Journal Article
ARLID 0561394
utime 20230324085633.7
mtime 20220921235959.9
SCOPUS 85118890244
WOS 000729809800011
DOI 10.1016/j.physa.2021.126530
title (primary) (eng) Heterogeneity in economic relationships: Scale dependence through the multivariate fractal regression
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0257423
ISSN 0378-4371
title Physica. A : Statistical Mechanics and its Applications
volume_id 588
publisher
name Elsevier
keyword Detrended fluctuation analysis
keyword Heterogeneity
keyword Multivariate fractal regression
keyword Scale-dependent effects
author (primary)
ARLID cav_un_auth*0436640
name1 Tilfani
name2 O.
country MA
author
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0351446
name1 Ferreira
name2 P.
country PT
author
ARLID cav_un_auth*0436641
name1 El Boukfaoui
name2 M. Y.
country MA
source
url http://library.utia.cas.cz/separaty/2022/E/kristoufek-0561394.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0378437121008037?via%3Dihub
cas_special
project
project_id GJ17-12386Y
agency GA ČR
country CZ
ARLID cav_un_auth*0351447
abstract (eng) Heterogeneity of effects between economic variables has been a frequently discussed topic for many years now. However, the estimation of such scale-dependent effects has proved challenging. Here, we propose a multivariate multiscale regression approach based on the combination of detrended fluctuation analysis and detrended cross-correlation analysis, but the idea can be easily translated into other time and frequency domain frameworks. As illustrations, we pick two classic economic models – the Taylor’s rule and the money demand function for the USA and Japan – and we uncover evident scale-dependence in the individual effects not visible by the simple regression tools. Importantly, the proposed framework can be used in any discipline where studying the effects at various scales is of interest. Further applications are thus certainly at hand.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50201
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0334058
confidential S
article_num 126530
mrcbC91 C
mrcbT16-e PHYSICSMULTIDISCIPLINARY
mrcbT16-j 0.502
mrcbT16-s 0.699
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2022
mrcbU14 85118890244 SCOPUS
mrcbU24 PUBMED
mrcbU34 000729809800011 WOS
mrcbU63 cav_un_epca*0257423 Physica. A : Statistical Mechanics and its Applications 0378-4371 1873-2119 Roč. 588 č. 1 2022 Elsevier