bibtype C - Conference Paper (international conference)
ARLID 0561404
utime 20230316105536.8
mtime 20220921235959.9
SCOPUS 85140432803
WOS 000871953900019
DOI 10.1007/978-3-031-16210-7_19
title (primary) (eng) Textural Features Sensitivity to Scale and Illumination Variations
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0561403
ISBN 978-3-031-16209-1
ISSN 1865-0929
title Advances in Computational Collective Intelligence : 14th International Conference, ICCCI 2022
page_num 237-249
publisher
place Cham
name Springer International Publishing
year 2022
editor
name1 Badica
name2 Costin
keyword Markovian Textural Features
keyword Scale Sensitivity
keyword Illumination Sensitivity
author (primary)
ARLID cav_un_auth*0213290
name1 Vácha
name2 Pavel
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/RO/vacha-0561404.pdf
cas_special
project
project_id GA19-12340S
agency GA ČR
country CZ
ARLID cav_un_auth*0376011
abstract (eng) Visual scene recognition is predominantly based on visual textures representing an object's material properties. However, the single material texture varies in scale and illumination angles due to mapping an object's shape. We present a comparative study of the color histogram, Gabor, opponent Gabor, Local Binary Pattern (LBP), and wide-sense Markovian textural features concerning their sensitivity to simultaneous scale and illumination variations. Due to their application dominance, these textural features are selected from more than \n50 published textural features. Markovian features are information preserving, and we demonstrate their superior performance for scale and illumination variable observation conditions over the standard alternative textural features. We bound the scale variation by double size, and illumination variation includes illumination spectra, acquisition devices, and 35 illumination directions spanned above a sample.
action
ARLID cav_un_auth*0436572
name International Conference on Computational Collective Intelligence (ICCCI 2022) /14./
dates 20220926
mrcbC20-s 20220930
place Hammamet
country TN
RIV BD
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2023
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0334061
cooperation
ARLID cav_un_auth*0295073
name Vysoká škola ekonomická v Praze
institution VŠE
country CZ
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Interdisciplinary Applications|Computer Science Theory Methods
arlyear 2022
mrcbU14 85140432803 SCOPUS
mrcbU24 PUBMED
mrcbU34 000871953900019 WOS
mrcbU63 cav_un_epca*0561403 Advances in Computational Collective Intelligence : 14th International Conference, ICCCI 2022 Springer International Publishing 2022 Cham 237 249 978-3-031-16209-1 Communications in Computer and Information Science 1653 1865-0929 1865-0937
mrcbU67 Badica Costin 340