bibtype J - Journal Article
ARLID 0561587
utime 20250320211055.4
mtime 20220926235959.9
SCOPUS 85141158537
WOS 000879014800008
DOI 10.21136/AM.2022.0136-21
title (primary) (eng) On an optimal setting of delays for the D-QSSA model reduction method applied to a class of chemical reaction networks
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0290654
ISSN 0862-7940
title Applications of Mathematics
volume_id 67
page_num 831-857
publisher
name Springer
keyword reaction network
keyword model reduction
keyword singular perturbation
keyword quasi-steady-state approximation
keyword D-QSSA method
keyword optimization
author (primary)
ARLID cav_un_auth*0100790
name1 Matonoha
name2 Ctirad
institution UIVT-O
full_dept (cz) Oddělení výpočetní matematiky
full_dept (eng) Department of Computational Mathematics
full_dept Department of Computational Mathematics
garant K
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0404313
name1 Papáček
name2 Štěpán
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0215855
name1 Lynnyk
name2 Volodymyr
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://dx.doi.org/10.21136/AM.2022.0136-21
cas_special
project
project_id GA19-05872S
agency GA ČR
country CZ
ARLID cav_un_auth*0376352
abstract (eng) We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed.
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2023
mrcbC47 UTIA-B 10000 10100 10102
mrcbC52 2 E 4 4e 4 20241118143030.0 4 20250320211055.4
inst_support RVO:67985807
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0334165
confidential S
mrcbC86 n.a. Article Mathematics Applied
mrcbC91 B 20241005
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.271
mrcbT16-s 0.242
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2022
mrcbTft \nSoubory v repozitáři: 0561587-afin.pdf
mrcbU14 85141158537 SCOPUS
mrcbU24 PUBMED
mrcbU34 000879014800008 WOS
mrcbU63 cav_un_epca*0290654 Applications of Mathematics 0862-7940 1572-9109 Roč. 67 SI 6 2022 831 857 Springer