bibtype |
J -
Journal Article
|
ARLID |
0561587 |
utime |
20250320211055.4 |
mtime |
20220926235959.9 |
SCOPUS |
85141158537 |
WOS |
000879014800008 |
DOI |
10.21136/AM.2022.0136-21 |
title
(primary) (eng) |
On an optimal setting of delays for the D-QSSA model reduction method applied to a class of chemical reaction networks |
specification |
page_count |
27 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0290654 |
ISSN |
0862-7940 |
title
|
Applications of Mathematics |
volume_id |
67 |
page_num |
831-857 |
publisher |
|
|
keyword |
reaction network |
keyword |
model reduction |
keyword |
singular perturbation |
keyword |
quasi-steady-state approximation |
keyword |
D-QSSA method |
keyword |
optimization |
author
(primary) |
ARLID |
cav_un_auth*0100790 |
name1 |
Matonoha |
name2 |
Ctirad |
institution |
UIVT-O |
full_dept (cz) |
Oddělení výpočetní matematiky |
full_dept (eng) |
Department of Computational Mathematics |
full_dept |
Department of Computational Mathematics |
garant |
K |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0404313 |
name1 |
Papáček |
name2 |
Štěpán |
institution |
UTIA-B |
full_dept (cz) |
Teorie řízení |
full_dept |
Department of Control Theory |
department (cz) |
TŘ |
department |
TR |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0215855 |
name1 |
Lynnyk |
name2 |
Volodymyr |
institution |
UTIA-B |
full_dept (cz) |
Teorie řízení |
full_dept |
Department of Control Theory |
department (cz) |
TŘ |
department |
TR |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA19-05872S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0376352 |
|
abstract
(eng) |
We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed. |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2023 |
mrcbC47 |
UTIA-B 10000 10100 10102 |
mrcbC52 |
2 E 4 4e 4 20241118143030.0 4 20250320211055.4 |
inst_support |
RVO:67985807 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0334165 |
confidential |
S |
mrcbC86 |
n.a. Article Mathematics Applied |
mrcbC91 |
B 20241005 |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-j |
0.271 |
mrcbT16-s |
0.242 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q4 |
arlyear |
2022 |
mrcbTft |
\nSoubory v repozitáři: 0561587-afin.pdf |
mrcbU14 |
85141158537 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000879014800008 WOS |
mrcbU63 |
cav_un_epca*0290654 Applications of Mathematics 0862-7940 1572-9109 Roč. 67 SI 6 2022 831 857 Springer |
|