bibtype J - Journal Article
ARLID 0561667
utime 20250312130308.0
mtime 20220928235959.9
SCOPUS 85124961285
WOS 000755540400001
DOI 10.1017/etds.2021.167
title (primary) (eng) On d-approachability, entropy density and B-free shifts
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0252855
ISSN 0143-3857
title Ergodic Theory and Dynamical Systems
volume_id 43
volume 3 (2023)
page_num 943-970
publisher
name Cambridge University Press
keyword specification property
keyword Besicovitch pseudometric
keyword topological entropy
keyword Poulsen simplex
keyword shift space
author (primary)
ARLID cav_un_auth*0364287
name1 Konieczny
name2 J.
country PL
author
ARLID cav_un_auth*0219359
name1 Kupsa
name2 Michal
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0364286
name1 Kwietniak
name2 D.
country PL
source
url http://library.utia.cas.cz/separaty/2023/SI/kupsa-0561667.pdf
source
url https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/on-bar-d-approachability-entropy-density-and-mathscr-b-free-shifts/F5D747D79D4C4ED5282AED0F63DDC8CA
cas_special
abstract (eng) We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein's (d) over bar metric. This leads to a class of shift spaces we call (d) over bar -approachable. A shift space is (d) over bar -approachable when its canonical sequence of Markov approximations converges to it also in the (d) over bar sense. We give a topological characterization of chain-mixing (d) over bar -approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure mu of such a shift space is the weak* limit of a sequence mu(n) of ergodic measures with the corresponding sequence of entropies h(mu) converging to h(mu) . We prove ergodic measures are entropy-dense for every shift space that can be approximated in the (d) over bar pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary B-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2024
num_of_auth 3
mrcbC52 2 R hod 4 4rh 4 20250310155644.7 4 20250310155900.0
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0341148
confidential S
mrcbC91 C
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.892
mrcbT16-s 1.005
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2023
mrcbTft \nSoubory v repozitáři: kupsa-0561667.pdf
mrcbU14 85124961285 SCOPUS
mrcbU24 PUBMED
mrcbU34 000755540400001 WOS
mrcbU63 cav_un_epca*0252855 Ergodic Theory and Dynamical Systems 0143-3857 1469-4417 Roč. 43 č. 3 2023 943 970 Cambridge University Press