bibtype J - Journal Article
ARLID 0561775
utime 20230418205119.2
mtime 20221003235959.9
SCOPUS 85113387774
WOS 000688431300002
DOI 10.1007/s10959-021-01125-1
title (primary) (eng) Large and Moderate Deviations Principles and Central Limit Theorem for the Stochastic 3D Primitive Equations with Gradient-Dependent Noise
specification
page_count 46 s.
media_type P
serial
ARLID cav_un_epca*0254080
ISSN 0894-9840
title Journal of Theoretical Probability
volume_id 35
volume 3 (2022)
page_num 1736-1781
publisher
name Springer
keyword large deviations principle
keyword moderate deviations principle
keyword primitive equations
keyword weak convergence approach
author (primary)
ARLID cav_un_auth*0370372
name1 Slavík
name2 Jakub
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/SI/slavik-0561775.pdf
source
url https://link.springer.com/article/10.1007/s10959-021-01125-1
cas_special
abstract (eng) We establish the large deviations principle (LDP) and the moderate deviations principle (MDP) and an almost sure version of the central limit theorem (CLT) for the stochastic 3D viscous primitive equations driven by a multiplicative white noise allowing dependence on spatial gradient of solutions with initial data in H2. The LDP is established using the weak convergence approach of Budjihara and Dupuis and uniform version of the stochastic Gronwall lemma. The result corrects a minor technical issue in Z. Dong, J. Zhai, and R. Zhang: Large deviations principles for 3D stochastic primitive equations, J. Differential Equations, 263(5):3110–3146, 2017, and establishes the result for a more general noise. The MDP is established using a similar argument.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2023
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0335180
confidential S
mrcbC91 C
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.625
mrcbT16-s 0.659
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2022
mrcbU14 85113387774 SCOPUS
mrcbU24 PUBMED
mrcbU34 000688431300002 WOS
mrcbU63 cav_un_epca*0254080 Journal of Theoretical Probability 0894-9840 1572-9230 Roč. 35 č. 3 2022 1736 1781 Springer