bibtype J - Journal Article
ARLID 0562467
utime 20230324090635.2
mtime 20221017235959.9
SCOPUS 85138797457
WOS 000876728600008
DOI 10.1016/j.ijar.2022.09.009
title (primary) (eng) Entropy for evaluation of Dempster-Shafer belief function models
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 151
volume 1 (2022)
page_num 164-181
publisher
name Elsevier
keyword Entropy
keyword Belief functions
keyword Compositional models
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
share 33
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
share 33
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0438050
name1 Shennoy
name2 P. P.
country US
share 33
garant A
source
url http://library.utia.cas.cz/separaty/2022/MTR/jirousek-0562467.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0888613X22001463?via%3Dihub
cas_special
project
project_id GA19-06569S
agency GA ČR
country CZ
ARLID cav_un_auth*0380559
abstract (eng) Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their high computational complexity. One can use space-saving factored approximations such as graphical belief function models to solve them. Using an analogy with probability distributions, we represent these approximations in the form of compositional models. Since no theoretical apparatus similar to probabilistic information theory exists for D-S belief functions (e. g., dissimilarity measure analogous to the Kullback-Liebler divergence measure), the problems arise not only in connection with the design of algorithms seeking optimal approximations but also in connection with a criterion comparing two different approximations. In this respect, the application of the analogy with probability theory fails. Therefore, in this paper, we conduct some synthetic experiments and describe the results designed to reveal whether some belief function entropy definitions described in the literature can detect optimal approximations, i.e., that achieve their minimum for an optimal approximation.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2023
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0336395
confidential S
mrcbC86 n.a. Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.721
mrcbT16-s 0.978
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2022
mrcbU14 85138797457 SCOPUS
mrcbU24 PUBMED
mrcbU34 000876728600008 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 151 č. 1 2022 164 181 Elsevier