bibtype J - Journal Article
ARLID 0562826
utime 20250310153141.5
mtime 20221024235959.9
SCOPUS 85140310447
WOS 000877579300006
DOI 10.1016/j.culher.2022.09.022
title (primary) (eng) Convolutional neural network exploiting pixel surroundings to reveal hidden features in artwork NIR reflectograms
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0258347
ISSN 1296-2074
title Journal of Cultural Heritage
volume_id 58
page_num 186-198
publisher
name Elsevier
keyword Signal separation
keyword Concealed features visualization
keyword Artwork analysis
keyword Infrared reflectography
keyword Convolutional neural networks
author (primary)
ARLID cav_un_auth*0438860
name1 Karella
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0254045
name1 Blažek
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0340366
name1 Striová
name2 J.
country IT
source
url https://www.sciencedirect.com/science/article/pii/S1296207422001637?via%3Dihub
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
project
project_id StrategieAV21/1
agency AV ČR
country CZ
ARLID cav_un_auth*0328930
abstract (eng) Near-infrared reflectography (NIR) is a well-established non-invasive and non-contact imaging technique. The NIR methods are able to reveal concealed layers of artwork, such as a painter’s sketch or repainted canvas. The information obtained may be helpful to historians for studying artist technique, attributing an artwork reconstructing faded details. Our research presents the improved method previously developed that reveals the hidden features by removing the information content of the visible spectrum from\nNIR. Based on convolutional neural networks (CNN), our model estimates the transfer function from visible spectra to NIR, which is nonlinear and specific for painting materials. Its parameters are learnt for particular paintings on the subsamples randomly selected across the canvas, and the model is further utilised to enhance the whole artwork. In addition to the previously developed model, our algorithm exploits each pixel’s surroundings to estimate its NIR response. This leads to more precise results and increased robustness to various noises. We demonstrate higher accuracy than the previous method on the historical paintings mock-ups and higher performance on well-known artworks such as Madonna dei Fusi attributed to Leonardo da Vinci.
result_subspec WOS
RIV JC
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2023
num_of_auth 3
mrcbC52 2 R hod 4 4rh 4 20250310152814.4 4 20250310153141.5
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0335176
cooperation
ARLID cav_un_auth*0438861
name National Research Council (CNR), National Institute of Optics (INO)
country IT
confidential S
mrcbC86 n.a. Article Archaeology|Art|Chemistry Analytical|Geosciences Multidisciplinary|Materials Science Multidisciplinary|Spectroscopy
mrcbC91 C
mrcbT16-e ARCHAEOLOGY|ART|GEOSCIENCESMULTIDISCIPLINARY|CHEMISTRYANALYTICAL|MATERIALSSCIENCEMULTIDISCIPLINARY|SPECTROSCOPY
mrcbT16-j 0.585
mrcbT16-s 0.699
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2022
mrcbTft \nSoubory v repozitáři: karella-562826.pdf
mrcbU14 85140310447 SCOPUS
mrcbU24 PUBMED
mrcbU34 000877579300006 WOS
mrcbU63 cav_un_epca*0258347 Journal of Cultural Heritage 1296-2074 1778-3674 Roč. 58 November–December 2022 186 198 Elsevier