bibtype C - Conference Paper (international conference)
ARLID 0563135
utime 20230316105808.8
mtime 20221031235959.9
SCOPUS 85146732817
DOI 10.1109/ICIP46576.2022.9897809
title (primary) (eng) Monitoring of Varroa Infestation rate in Beehives: A Simple AI Approach
specification
page_count 5 s.
media_type E
serial
ARLID cav_un_epca*0564843
ISBN 978-1-6654-9620-9
ISSN 2381-8549
title IEEE International Conference on Image Processing 2022 : Proceedings
page_num 3341-3345
publisher
place Piscataway
name IEEE
year 2022
keyword Machine learning algorithms
keyword Costs
keyword Image processing
keyword Machine learning
keyword Frequency measurement
keyword Complexity theory
author (primary)
ARLID cav_un_auth*0401593
name1 Picek
name2 L.
country CZ
author
ARLID cav_un_auth*0283562
name1 Novozámský
name2 Adam
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274385
name1 Čapková Frydrychová
name2 Radmila
institution BC-A
full_dept (cz) ENTU - Molekulární biologie a genetika
full_dept Molecular Biology and Genetics
full_dept Insect Molecular Biology and Genetics
fullinstit Biologické centrum AV ČR, v. v. i.
author
ARLID cav_un_auth*0101238
name1 Zitová
name2 Barbara
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0050534
name1 Mach
name2 P.
country CZ
source
url http://library.utia.cas.cz/separaty/2022/ZOI/novozamsky-0563135.pdf
cas_special
project
project_id StrategieAV21/1
agency AV ČR
country CZ
ARLID cav_un_auth*0328930
abstract (eng) This paper addresses the monitoring of Varroa destructor infestation in Western honey bee colonies. We propose a simple approach using automatic image-based analysis of the fallout on beehive bottom boards. In contrast to the existing high-tech methods, our solution does not require extensive and expensive hardware components, just a standard smart-phone. The described method has the potential to replace the time-consuming, inaccurate, and most common practice where the infestation level is evaluated manually. The underlining machine learning method combines a thresholding algorithm with a shallow CNN—VarroaNet. It provides a reliable estimate of the infestation level with a mean infestation level accuracy of 96.0% and 93.8% in the autumn and winter, respectively. Furthermore, we introduce the developed end-to-end system and its deployment into the online beekeeper’s diary—ProBee—that allows users to identify and track infestation levels on bee colonies.
action
ARLID cav_un_auth*0438859
name IEEE International Conference on Image Processing 2022 /29./
dates 20221016
mrcbC20-s 20221019
place Bordeaux
country FR
RIV JC
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2023
num_of_auth 5
mrcbC47 BC-A 10000 10600 10613
presentation_type PO
inst_support RVO:67985556
inst_support RVO:60077344
permalink https://hdl.handle.net/11104/0336399
cooperation
ARLID cav_un_auth*0309068
name Západočeská univerzita v Plzni, Fakulta aplikovaných věd
country CZ
cooperation
ARLID cav_un_auth*0304556
name Biologické centrum AV ČR
institution BC
country CZ
confidential S
arlyear 2022
mrcbU14 85146732817 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0564843 IEEE International Conference on Image Processing 2022 : Proceedings IEEE 2022 Piscataway 3341 3345 978-1-6654-9620-9 2381-8549