bibtype J - Journal Article
ARLID 0563205
utime 20230324090745.2
mtime 20221101235959.9
SCOPUS 85126531727
WOS 000794128400002
DOI 10.1016/j.amc.2022.127048
title (primary) (eng) Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: Nodal elements
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 424
publisher
name Elsevier
keyword Finite element method
keyword Nonlinear energy minimization
keyword Hyperelasticity
keyword Approximative gradient
keyword Vectorization
keyword MATLAB
author (primary)
ARLID cav_un_auth*0410335
name1 Moskovka
name2 A.
country CZ
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/MTR/valdman-0563205.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0096300322001345?via%3Dihub
cas_special
project
project_id GF19-29646L
agency GA ČR
country CZ
ARLID cav_un_auth*0385134
project
project_id StrategieAV21/23
agency AV ČR
country CZ
ARLID cav_un_auth*0388211
project
project_id 8J21AT001
agency GA MŠk
ARLID cav_un_auth*0413224
abstract (eng) Nonlinear energy functionals appearing in the calculus of variations can be discretized by the finite element (FE) method and formulated as a sum of energy contributions from local elements. A fast evaluation of energy functionals containing the first order gradient terms is a central part of this contribution. We describe a vectorized implementation using the simplest linear nodal (P1) elements in which all energy contributions are evaluated all at once without the loop over triangular or tetrahedral elements. Furthermore, in connection to the first-order optimization methods, the discrete gradient of energy functional is assembled in a way that the gradient components are evaluated over all degrees of freedom all at once. The key ingredient is the vectorization of exact or approximate energy gradients over nodal patches. It leads to a time-efficient implementation at higher memory-cost. Provided codes in MATLAB related to 2D/3D hyperelasticity and 2D p-Laplacian problem are available for download and structured in a way it can be easily extended to other types of vector or scalar forms of energies.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2023
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0335244
cooperation
ARLID cav_un_auth*0438998
name Faculty of Applied Sciences, University of West Bohemia
confidential S
article_num 127048
mrcbC86 n.a. Article Mathematics Applied
mrcbC91 C
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.825
mrcbT16-s 0.962
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2022
mrcbU14 85126531727 SCOPUS
mrcbU24 PUBMED
mrcbU34 000794128400002 WOS
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 424 č. 1 2022 Elsevier