bibtype J - Journal Article
ARLID 0563455
utime 20230323094921.7
mtime 20221104235959.9
SCOPUS 85135316166
WOS 000859686100008
DOI 10.1016/j.eswa.2022.118272
title (primary) (eng) A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0252943
ISSN 0957-4174
title Expert Systems With Applications
volume_id 209
publisher
name Elsevier
keyword infrared (IR)
keyword visible image
keyword image fusion
keyword AOA
keyword image segmentation
keyword WLS
author (primary)
ARLID cav_un_auth*0439238
name1 Singh
name2 S.
country IN
author
ARLID cav_un_auth*0439239
name1 Singh
name2 H.
country IN
author
ARLID cav_un_auth*0439240
name1 Mittal
name2 N.
country IN
author
ARLID cav_un_auth*0439241
name1 Singh
name2 H.
country IN
author
ARLID cav_un_auth*0439242
name1 Hussien
name2 A.G.
country EG
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/ZOI/sroubek-0563455.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0957417422014129?via%3Dihub
cas_special
abstract (eng) Images are fused to produce a composite image by combining key characteristics of the source images in image fusion. It makes the fused image better for human vision and machine vision. A novel procedure of Infrared (IR) and Visible (Vis) image fusion is proposed in this manuscript. The main challenges of feature level image fusion are that it will introduce artifacts and noise in the fused image. To preserve the meaningful information without adding artifacts from the source input images, weight map computed from Arithmetic optimization algorithm (AOA) is used for the image fusion process. In this manuscript, feature level fusion is performed after refining the weight maps using a weighted least square optimization (WLS) technique. Through this, the derived salient object details are merged into the visual image without introducing distortion. To affirm the validity of the proposed methodology simulation results are carried for twenty-one image data sets. It is concluded from the qualitative and quantitative experimental analysis that the proposed method works well for most of the image data sets and shows better performance than certain traditional existing models.
result_subspec WOS
RIV JD
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2023
num_of_auth 6
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0336403
confidential S
article_num 118272
mrcbC86 1* Article Computer Science Artificial Intelligence|Engineering Electrical Electronic|Operations Research Management Science
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 1.277
mrcbT16-s 1.873
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2022
mrcbU14 85135316166 SCOPUS
mrcbU24 PUBMED
mrcbU34 000859686100008 WOS
mrcbU63 cav_un_epca*0252943 Expert Systems With Applications 0957-4174 1873-6793 Roč. 209 č. 1 2022 Elsevier