| bibtype |
J -
Journal Article
|
| ARLID |
0564670 |
| utime |
20230321162522.1 |
| mtime |
20221129235959.9 |
| SCOPUS |
85136662109 |
| WOS |
000852046200003 |
| DOI |
10.1016/j.ijar.2022.08.004 |
| title
(primary) (eng) |
A new class of decomposition integrals on finite spaces |
| specification |
| page_count |
14 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0256774 |
| ISSN |
0888-613X |
| title
|
International Journal of Approximate Reasoning |
| volume_id |
149 |
| volume |
1 (2022) |
| page_num |
192-205 |
| publisher |
|
|
| keyword |
Decomposition integral |
| keyword |
Choquet integral |
| keyword |
Concave integral |
| keyword |
Concave integral |
| keyword |
Pan-integral |
| author
(primary) |
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| full_dept (cz) |
Ekonometrie |
| full_dept (eng) |
Department of Econometrics |
| department (cz) |
E |
| department (eng) |
E |
| full_dept |
Department of Econometrics |
| share |
30 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0348640 |
| name1 |
Li |
| name2 |
J. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0258953 |
| name1 |
Ouyang |
| name2 |
Y. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0413269 |
| name1 |
Šeliga |
| name2 |
A. |
| country |
SK |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
A new type of decomposition integral is introduced by using a family of decomposition integrals based on the collections relating to partitions and maximal chains of sets. This new integral extends the Lebesgue integral, and it is different from those well-known decomposition integrals, such as the Choquet, concave, pan-, Shilkret integrals and PCintegral. In the structure of a lattice on the class of decomposition integrals, the introduced decomposition integral is between the Choquet integral and the concave integral, and also between the pan-integral and the concave integral, and it is a lower bound of PC-integral. The coincidences among several well-known integrals and this new integral are also shown. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2023 |
| num_of_auth |
4 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0337892 |
| confidential |
S |
| mrcbC86 |
3+4 Article Computer Science Artificial Intelligence |
| mrcbC91 |
C |
| mrcbT16-e |
COMPUTERSCIENCE.ARTIFICIALINTELLIGENCE |
| mrcbT16-f |
3.5 |
| mrcbT16-g |
0.9 |
| mrcbT16-h |
5.9 |
| mrcbT16-i |
0.00472 |
| mrcbT16-j |
0.721 |
| mrcbT16-k |
5449 |
| mrcbT16-s |
0.978 |
| mrcbT16-5 |
3.400 |
| mrcbT16-6 |
167 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
53.4 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q2 |
| mrcbT16-M |
0.73 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
53.4 |
| arlyear |
2022 |
| mrcbU14 |
85136662109 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000852046200003 WOS |
| mrcbU63 |
cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 149 č. 1 2022 192 205 Elsevier |
|