bibtype J - Journal Article
ARLID 0564670
utime 20230321162522.1
mtime 20221129235959.9
SCOPUS 85136662109
WOS 000852046200003
DOI 10.1016/j.ijar.2022.08.004
title (primary) (eng) A new class of decomposition integrals on finite spaces
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 149
volume 1 (2022)
page_num 192-205
publisher
name Elsevier
keyword Decomposition integral
keyword Choquet integral
keyword Concave integral
keyword Concave integral
keyword Pan-integral
author (primary)
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
share 30
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
author
ARLID cav_un_auth*0413269
name1 Šeliga
name2 A.
country SK
source
url http://library.utia.cas.cz/separaty/2022/E/mesiar-0564670.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0888613X22001165?via%3Dihub
cas_special
abstract (eng) A new type of decomposition integral is introduced by using a family of decomposition integrals based on the collections relating to partitions and maximal chains of sets. This new integral extends the Lebesgue integral, and it is different from those well-known decomposition integrals, such as the Choquet, concave, pan-, Shilkret integrals and PCintegral. In the structure of a lattice on the class of decomposition integrals, the introduced decomposition integral is between the Choquet integral and the concave integral, and also between the pan-integral and the concave integral, and it is a lower bound of PC-integral. The coincidences among several well-known integrals and this new integral are also shown.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0337892
confidential S
mrcbC86 3+4 Article Computer Science Artificial Intelligence
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.721
mrcbT16-s 0.978
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2022
mrcbU14 85136662109 SCOPUS
mrcbU24 PUBMED
mrcbU34 000852046200003 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 149 č. 1 2022 192 205 Elsevier