bibtype J - Journal Article
ARLID 0564676
utime 20230321162251.2
mtime 20221129235959.9
SCOPUS 85135958796
WOS 000860782400010
DOI 10.1016/j.ins.2022.08.007
title (primary) (eng) A constructive framework to define fusion functions with floating domains in arbitrary closed real intervals
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 610
volume 1 (2022)
page_num 800-829
publisher
name Elsevier
keyword (a,b)-Aggregation functions
keyword (a,b)-Fusion functions
keyword n-Dimensional overlap functions
keyword t-conorms
keyword t-norms
keyword uninorms
author (primary)
ARLID cav_un_auth*0434043
name1 Asmus
name2 T. C.
country BR
share 30
garant K
author
ARLID cav_un_auth*0330395
name1 Dimuro
name2 G. P.
country BR
author
ARLID cav_un_auth*0298830
name1 Bedregal
name2 B.
country BR
author
ARLID cav_un_auth*0330394
name1 Sanz
name2 J. A.
country ES
author
ARLID cav_un_auth*0275658
name1 Fernandez
name2 J.
country ES
author
ARLID cav_un_auth*0440649
name1 Rodriguez-Martinez
name2 I.
country ES
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 10
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0271524
name1 Bustince
name2 H.
country ES
source
url http://library.utia.cas.cz/separaty/2022/E/mesiar-0564676.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0020025522008878?via%3Dihub
cas_special
abstract (eng) Fusion functions and their most important subclass, aggregation functions, have been successfully applied in fuzzy modeling. However, there are practical problems, such as classification via Convolutional Neural Networks (CNNs), where the data to be aggregated are not modeling membership degrees in the unit interval. In this scenario, systems could benefit from the application of operators defined in domains different from [0,1], although, presenting similar behavior of some aggregation functions whose subclasses are currently defined only in the fuzzy context (e.g., overlap functions and t-norms). So, the main objective of this paper is to present a general framework to characterize classes of fusion functions with floating domains, called (a,b)-fusion functions, defined on any closed real interval [a,b], based on classes of core fusion functions defined on [0,1]. The fundamental aspect of this framework is that the properties of a core fusion function are preserved in the context of the analogous (a,b)-fusion function. Construction methods are presented, and some properties are studied. We also introduce a framework to define fusion functions in which the inputs come from an interval [a,b] but the output is mapped on a possibly different interval [c,d]. Finally, we present an illustrative example in image classification via CNNs.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2023
num_of_auth 8
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0337897
confidential S
mrcbC86 n.a. Article Computer Science Information Systems
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 1.333
mrcbT16-s 2.285
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2022
mrcbU14 85135958796 SCOPUS
mrcbU24 PUBMED
mrcbU34 000860782400010 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 610 č. 1 2022 800 829 Elsevier