bibtype J - Journal Article
ARLID 0564920
utime 20230321161952.1
mtime 20221202235959.9
SCOPUS 85127334374
WOS 000796740200004
DOI 10.1016/j.csda.2022.107480
title (primary) (eng) Multivariate ranks based on randomized lift-interdirections
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0256439
ISSN 0167-9473
title Computational Statistics and Data Analysis
volume_id 172
publisher
name Elsevier
keyword multivariate rank
keyword lift-interdirection
keyword interdirection
keyword rank test
keyword one-sample test
keyword robustness
author (primary)
ARLID cav_un_auth*0385823
name1 Hudecová
name2 Š.
country CZ
author
ARLID cav_un_auth*0266474
name1 Šiman
name2 Miroslav
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2022/SI/siman-0564920.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0167947322000603?via%3Dihub
cas_special
project
project_id GA21-05325S
agency GA ČR
ARLID cav_un_auth*0409039
project
project_id GF22-01639K
agency GA ČR
country CZ
ARLID cav_un_auth*0440862
abstract (eng) Every multivariate sign and rank test needs a workable concept of ranks for multivariate data. Unfortunately, multidimensional spaces lack natural ordering and, consequently, there are no universally accepted ways how to rank vector observations. Existing proposals usable beyond small dimensions are very few in number, and each of them has its own advantages and drawbacks. Therefore, new multivariate ranks based on randomized lift-interdirections are presented, discussed and investigated. These naturally robust and invariant hyperplane-based ranks can be computed quickly and easily even in relatively high-dimensional spaces, and they can be used for nonparametric statistical inference in some existing optimal statistical procedures without altering their asymptotic behavior under null hypotheses or changing their performance under local alternatives. This is not only proved theoretically in case of the canonical sign and rank one-sample test for elliptically distributed observations, but also illustrated empirically in a small simulation study.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2023
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0336508
confidential S
article_num 107480
mrcbC86 n.a. Article Computer Science Interdisciplinary Applications|Statistics Probability
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|STATISTICSPROBABILITY
mrcbT16-j 0.947
mrcbT16-s 0.877
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2022
mrcbU14 85127334374 SCOPUS
mrcbU24 PUBMED
mrcbU34 000796740200004 WOS
mrcbU63 cav_un_epca*0256439 Computational Statistics and Data Analysis 0167-9473 1872-7352 Roč. 172 č. 1 2022 Elsevier