bibtype J - Journal Article
ARLID 0565460
utime 20230418205243.9
mtime 20221214235959.9
SCOPUS 85129655037
WOS 000795507300001
DOI 10.1109/ACCESS.2022.3170893
title (primary) (eng) Fast Computation of Hahn Polynomials for High Order Moments
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0461036
ISSN 2169-3536
title IEEE Access
volume_id 10
volume 1 (2022)
page_num 48719-48732
publisher
name Institute of Electrical and Electronics Engineers
keyword Hahn polynomials
keyword Hahn moments
keyword propagation error
keyword numerical error
author (primary)
ARLID cav_un_auth*0428249
name1 Mahmmod
name2 B. M.
country IQ
author
ARLID cav_un_auth*0428248
name1 Abdulhussain
name2 S. H.
country IQ
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0442693
name1 Hussain
name2 A.
country GB
garant K
source
url http://library.utia.cas.cz/separaty/2022/ZOI/suk-0565460.pdf
source
url https://ieeexplore.ieee.org/document/9764684
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
project
project_id StrategieAV21/1
agency AV ČR
country CZ
ARLID cav_un_auth*0441412
abstract (eng) Discrete Hahn polynomials (DHPs) and their moments are considered to be one of the efficient orthogonal moments and they are applied in various scientific areas such as image processing and feature extraction. Commonly, DHPs are used as object representation, however, they suffer from the problem of numerical instability when the moment order becomes large. In this paper, an operative method to compute the Hahn orthogonal basis is proposed and applied to high orders. This paper developed a new mathematical model for computing the initial value of the DHP and for different values of DHP parameters (alpha and beta). In addition, the proposed method is composed of two recurrence algorithms with an adaptive threshold to stabilize the generation of the DHP coefficients. It is compared with state-of-the-art algorithms in terms of computational cost and the maximum size that can be correctly generated. The experimental results show that the proposed algorithm performs better in both parameters for wide ranges of parameter values alpha and beta, and polynomial sizes.
result_subspec WOS
RIV IN
FORD0 20000
FORD1 20200
FORD2 20201
reportyear 2023
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0337913
confidential S
mrcbC86 1* Article Computer Science Information Systems|Engineering Electrical Electronic|Telecommunications
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS|ENGINEERINGELECTRICALELECTRONIC|TELECOMMUNICATIONS
mrcbT16-j 0.685
mrcbT16-s 0.926
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2022
mrcbU14 85129655037 SCOPUS
mrcbU24 PUBMED
mrcbU34 000795507300001 WOS
mrcbU63 cav_un_epca*0461036 IEEE Access 2169-3536 2169-3536 Roč. 10 č. 1 2022 48719 48732 Institute of Electrical and Electronics Engineers