bibtype M - Monography Chapter
ARLID 0565542
utime 20240404124054.8
mtime 20221215235959.9
DOI 10.1007/978-981-19-1550-5_125-1
title (primary) (eng) Modern Approaches to Statistical Estimation of Measurements in the Location Model and Regression
specification
page_count 22 s.
book_pages 980
media_type E
serial
ARLID cav_un_epca*0565541
ISBN 978-981-19-1550-5
title Handbook of Metrology and Applications
page_num 1-22
publisher
place Singapore
name Springer
year 2022
editor
name1 Aswal
name2 D. K.
editor
name1 Yadav
name2 S.
editor
name1 Takatsuji
name2 T.
editor
name1 Rachakonda
name2 P.
editor
name1 Kumar
name2 H.
keyword regression
keyword measurement error
keyword error propagation
keyword robustness
keyword Bayesian estimation
author (primary)
ARLID cav_un_auth*0263018
name1 Kalina
name2 Jan
institution UIVT-O
full_dept (cz) Oddělení strojového učení
full_dept (eng) Department of Machine Learning
full_dept Department of Machine Learning
garant K
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0231277
name1 Vidnerová
name2 Petra
institution UIVT-O
full_dept (cz) Oddělení strojového učení
full_dept Department of Machine Learning
full_dept Department of Machine Learning
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101199
name1 Soukup
name2 Lubomír
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://dx.doi.org/10.1007/978-981-19-1550-5_125-1
cas_special
project
project_id GA22-02067S
agency GA ČR
country CZ
ARLID cav_un_auth*0435776
abstract (eng) Metrology as the science about measurement is highly intertwined with statistical point estimation. Evaluating and controling uncertainty of measurements and analyzing them by means of exploratory data analysis (EDA) or predictive data mining requires to exploit advanced tools of statistical estimation. The main focus of the chapter is devoted to nonstandard approaches to the analysis of measurements in two fundamental models, namely, the location model and linear regression. Robust regression methods, which are resistant to the presence of outlying (anomalous) measurements, are discussed here. An illustration of their performance over a real dataset related to thyroid disease and a Monte Carlo simulation reveal here the least weighted squares estimator, which has remained quite neglected so far, outperforms much more renowned robust regression estimators in terms of the variability. Further, Bayesian estimation in the location model is revealed here to have the ability to incorporate previous measurements in a very intuitive way. Finally, the chapter gives a warning that linear regression performed on data contaminated by measurement errors yields biased estimates and requires specific estimation tools for the so-called measurement error model.
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 3
mrcbC52 4 A 4a 4a 20231122151028.1
inst_support RVO:67985807
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0337067
cooperation
ARLID cav_un_auth*0339298
name UTIA
confidential S
arlyear 2022
mrcbTft \nSoubory v repozitáři: 0565542-afin.pdf, 0565542-a.pdf
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0565541 Handbook of Metrology and Applications Springer 2022 Singapore 1 22 978-981-19-1550-5
mrcbU67 Aswal D. K. 340
mrcbU67 Yadav S. 340
mrcbU67 Takatsuji T. 340
mrcbU67 Rachakonda P. 340
mrcbU67 Kumar H. 340