bibtype J - Journal Article
ARLID 0568617
utime 20240402213620.8
mtime 20230215235959.9
SCOPUS 85148417650
WOS 000935455200003
DOI 10.1109/TSP.2023.3240359
title (primary) (eng) Grid-based Bayesian Filters with Functional Decomposition of Transient Density
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 71
volume 2 (2023)
page_num 92-104
keyword State estimation
keyword nonlinear filtering
keyword non-negative matrix factorization
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0434606
name1 Straka
name2 O.
country CZ
author
ARLID cav_un_auth*0213309
name1 Duník
name2 J.
country CZ
source
url http://library.utia.cas.cz/separaty/2023/SI/tichavsky-0568617.pdf
source
url https://ieeexplore.ieee.org/document/10035470
cas_special
project
project_id GA22-11101S
agency GA ČR
country CZ
ARLID cav_un_auth*0435406
abstract (eng) The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention to grid-based Bayesian filters such as the point-mass filter (PMF) and the marginal particle filter (mPF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition approximates the transient density in a closed region. It is based on a non-negative matrix/tensor factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution involving the density, which is a performance bottleneck of the standard PMF/mPF implementations. The estimate quality and computational costs can be efficiently controlled by choosing an appropriate decomposition rank. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario and a problem involving a univariate non-stationary growth model.
result_subspec WOS
RIV BB
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2024
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0340754
confidential S
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.897
mrcbT16-D Q1
arlyear 2023
mrcbU14 85148417650 SCOPUS
mrcbU24 PUBMED
mrcbU34 000935455200003 WOS
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 71 2 2023 92 104 1053-587X 1941-0476