bibtype M - Monography Chapter
ARLID 0569490
utime 20240402213642.2
mtime 20230302235959.9
DOI 10.1007/978-3-031-26474-0_9
title (primary) (eng) Prediction of overdispersed count data using real-time cluster-based discretization of explanatory variables
specification
page_count 22 s.
book_pages 209
media_type P
serial
ARLID cav_un_epca*0569489
ISBN 978-3-031-26474-0
ISSN 1876-1100
title Informatics in Control, Automation and Robotics. ICINCO 2021 : Revised Selected Papers
page_num 163-184
publisher
place Cham
name Springer
year 2023
editor
name1 Gusikhin
name2 O.
editor
name1 Madani
name2 K.
editor
name1 Nijmeijer
name2 H.
keyword Cluster-based model
keyword Count data
keyword Overdispersion
keyword Recursive Bayesian mixture estimation
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2023/ZS/uglickich-0569490.pdf
cas_special
project
project_id 8A19009
agency GA MŠk
country CZ
ARLID cav_un_auth*0385121
abstract (eng) The chapter focuses on the description of the relationship of the count variable and explanatory Gaussian variables. The cluster-based model is proposed, which is constructed on conditionally independent Gaussian clusters captured in real time using recursive algorithms of the Bayesian mixture estimation theory. The resulting model is expected to be used for predicting count data using real time Gaussian observations. The Poisson distribution of the count data is used as a basic model. However, in reality, count data often do not satisfy the Poisson assumption of equal mean and variance. For this case, five cluster-based Poisson-related models of overdispersed data have been studied. The experimental part of the chapter demonstrates a comparison of the prediction accuracy of the considered models with two theoretical counterparts for the case of weak and strong overdispersion with the help of simulations. The paper reports that the most accurate prediction in average has been provided by the cluster-based Generalized Poisson models.
action
ARLID cav_un_auth*0446747
name ICINCO 2021 : International Conference on Informatics in Control, Automation and Robotics /18./
dates 20210706
mrcbC20-s 20210708
place online
country CH
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0340877
confidential S
arlyear 2023
mrcbU02 M
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0569489 Informatics in Control, Automation and Robotics. ICINCO 2021 : Revised Selected Papers Springer 2023 Cham 163 184 978-3-031-26474-0 Lecture Notes in Electrical Engineering 1006 1876-1100 1876-1119
mrcbU67 Gusikhin O. 340
mrcbU67 Madani K. 340
mrcbU67 Nijmeijer H. 340