bibtype C - Conference Paper (international conference)
ARLID 0569938
utime 20230316110705.5
mtime 20230313235959.9
SCOPUS 85134982515
WOS 000867754200066
DOI 10.1109/CVPR52688.2022.00074
title (primary) (eng) SASIC: Stereo Image Compression With Latent Shifts and Stereo Attention
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0570015
ISBN 978-1-6654-6946-3
ISSN 1063-6919
title 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022)
page_num 661-670
publisher
place Piscataway
name IEEE
year 2022
keyword Deep learning architectures and techniques
keyword Image and video synthesis and generation
keyword Machine learning
author (primary)
ARLID cav_un_auth*0447356
name1 Wödlinger
name2 M.
country AT
author
ARLID cav_un_auth*0293863
name1 Kotera
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0447357
name1 Sablatnig
name2 R.
country AT
source
url http://library.utia.cas.cz/separaty/2023/ZOI/kotera-0569938.pdf
cas_special
abstract (eng) We propose a learned method for stereo image compression that leverages the similarity of the left and right images in a stereo pair due to overlapping fields of view. The left image is compressed by a learned compression method based on an autoencoder with a hyperprior entropy model. The right image uses this information from the previously encoded left image in both the encoding and decoding stages. In particular, for the right image, we encode only the residual of its latent representation to the optimally shifted latent of the left image. On top of that, we also employ a stereo attention module to connect left and right images during decoding. The performance of the proposed method is evaluated on two benchmark stereo image datasets (Cityscapes and InStereo2K) and outperforms previous stereo image compression methods while being significantly smaller in model size.
action
ARLID cav_un_auth*0447358
name Conference on Computer Vision and Pattern Recognition 2022 (CVPR 2022)
dates 20220619
mrcbC20-s 20220624
place New Orleans
country US
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2023
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0341356
cooperation
ARLID cav_un_auth*0301586
name Technische Universität Wien
institution TUW
country AT
confidential S
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Imaging Science Photographic Technology
arlyear 2022
mrcbU14 85134982515 SCOPUS
mrcbU24 PUBMED
mrcbU34 000867754200066 WOS
mrcbU63 cav_un_epca*0570015 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) IEEE 2022 Piscataway 661 670 978-1-6654-6946-3 IEEE Conference on Computer Vision and Pattern Recognition 1063-6919