bibtype J - Journal Article
ARLID 0571170
utime 20241111130553.2
mtime 20230425235959.9
SCOPUS 85150795827
WOS 000966714500001
DOI 10.1016/j.epidem.2023.100677
title (primary) (eng) On the contact tracing for COVID-19: A simulation study
specification
page_count 9 s.
serial
ARLID cav_un_epca*0378189
ISSN 1755-4365
title Epidemics
volume_id 43
publisher
name Elsevier
keyword epidemiological model
keyword agent-based model
keyword non-pharmaceutical interventions
author (primary)
ARLID cav_un_auth*1103974
name1 Berec
name2 Luděk
institution BC-A
full_dept (cz) ENTU - Ekologie
full_dept (eng) Ecology
full_dept Insect Ecology
fullinstit Biologické centrum AV ČR, v. v. i.
author
ARLID cav_un_auth*0449183
name1 Diviák
name2 T.
country CZ
author
ARLID cav_un_auth*0264564
name1 Kuběna
name2 Aleš Antonín
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0106308
name1 Levínský
name2 René
institution NHU-N
fullinstit Národohospodářský ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0100794
name1 Neruda
name2 Roman
institution UIVT-O
full_dept (cz) Oddělení umělé inteligence
full_dept Department of Artificial Intelligence
full_dept Department of Machine Learning
garant K
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0402629
name1 Suchopárová
name2 Gabriela
institution UIVT-O
full_dept (cz) Oddělení umělé inteligence
full_dept Department of Artificial Intelligence
country CZ
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0449241
name1 Šlerka
name2 Josef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101206
name1 Šmíd
name2 Martin
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0091778
name1 Trnka
name2 J.
country CZ
author
ARLID cav_un_auth*0283215
name1 Tuček
name2 V.
country CZ
author
ARLID cav_un_auth*0231277
name1 Vidnerová
name2 Petra
institution UIVT-O
full_dept (cz) Oddělení umělé inteligence
full_dept Department of Artificial Intelligence
full_dept Department of Machine Learning
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0237467
name1 Zajíček
name2 Milan
institution UTIA-B
full_dept (cz) Výpočetní Středisko
full_dept Computer Centre
department (cz) VS
department VS
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový soubor
url https://www.sciencedirect.com/science/article/pii/S1755436523000130/pdfft?md5=2fe131dd453e0ec081345eb56b4310dd&pid=1-s2.0-S1755436523000130-main.pdf
cas_special
project
project_id TL04000282
agency GA TA ČR
country CZ
ARLID cav_un_auth*0414828
project
project_id EF16_019/0000734
agency GA MŠk
country CZ
ARLID cav_un_auth*0449184
abstract (eng) Background:\nContact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19.\nMethods:\nIn order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts.\nWe evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark), second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020), third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020).\nFindings:\nThere are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic.
result_subspec WOS
RIV FN
FORD0 10000
FORD1 10600
FORD2 10602
reportyear 2024
num_of_auth 12
mrcbC47 UTIA-B 10000 10100 10103
mrcbC47 UIVT-O 10000 10200 10201
mrcbC47 NHU-N 50000 50400 50401
mrcbC52 4 O 4o 20241111130553.1
mrcbC55 UTIA-B BB
inst_support RVO:60077344
inst_support RVO:67985807
inst_support RVO:67985556
inst_support RVO:67985998
permalink https://hdl.handle.net/11104/0345994
cooperation
ARLID cav_un_auth*0349694
name Jihočeská univerzita České Budějovice
institution JU České Budějovice
country CZ
confidential S
article_num 100677
mrcbC91 A
mrcbT16-e INFECTIOUSDISEASES
mrcbT16-j 1.038
mrcbT16-s 0.927
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2023
mrcbTft \nSoubory v repozitáři: 0571170-aoa.pdf
mrcbU14 85150795827 SCOPUS
mrcbU24 36989916 PUBMED
mrcbU34 000966714500001 WOS
mrcbU56 textový soubor
mrcbU63 cav_un_epca*0378189 Epidemics 1755-4365 1878-0067 Roč. 43 JUN 01 2023 Elsevier