bibtype J - Journal Article
ARLID 0571182
utime 20240402213828.0
mtime 20230426235959.9
SCOPUS 85142299302
WOS 000959169100009
DOI 10.1051/m2an/2022089
title (primary) (eng) Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow
specification
page_count 31 s.
media_type P
serial
ARLID cav_un_epca*0565235
ISSN 2822-7840
title ESAIM. Mathematical Modelling and Numerical Analysis
volume_id 57
volume 2 (2023)
page_num 785-815
keyword stochastic total variation flow
keyword stochastic variational inequalities
keyword image processing
keyword finite element approximation
keyword tightness in BV spaces
author (primary)
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0323271
name1 Baňas
name2 L.
country DE
source
url http://library.utia.cas.cz/separaty/2023/SI/ondrejat-0571182.pdf
source
url https://www.esaim-m2an.org/articles/m2an/abs/2023/02/m2an220087/m2an220087.html
cas_special
project
project_id GA22-12790S
agency GA ČR
country CZ
ARLID cav_un_auth*0449240
abstract (eng) We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges in law to a solution that is defined in the sense of stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show to holds even in probability. As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of image denoising.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0342475
confidential S
mrcbC91 A
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 1.076
mrcbT16-s 1.247
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2023
mrcbU14 85142299302 SCOPUS
mrcbU24 PUBMED
mrcbU34 000959169100009 WOS
mrcbU63 cav_un_epca*0565235 ESAIM. Mathematical Modelling and Numerical Analysis 57 2 2023 785 815 2822-7840 2804-7214