bibtype C - Conference Paper (international conference)
ARLID 0571260
utime 20240402213835.5
mtime 20230428235959.9
DOI 10.1007/978-3-031-31435-3_20
title (primary) (eng) Affine Moment Invariants of Tensor Fields
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0571254
ISBN 978-3-031-31437-7
title Image Analysis: 23rd Scandinavian Conference, SCIA 2023
page_num 299-313
publisher
place Cham
name Springer
year 2023
editor
name1 Gade
name2 R.
keyword Tensor field
keyword affine invariants
keyword template matching
author (primary)
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0377447
name1 Lébl
name2 Matěj
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0349350
name1 Bujack
name2 R.
country US
author
ARLID cav_un_auth*0244806
name1 Ibrahim
name2 I.
country CZ
source
url http://library.utia.cas.cz/separaty/2023/ZOI/flusser-0571260.pdf
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
project
project_id StrategieAV21/1
agency AV ČR
country CZ
ARLID cav_un_auth*0328930
project
project_id IN 0002300
agency GA MZd
country CZ
ARLID cav_un_auth*0449355
abstract (eng) Tensor fields (TF) are a special kind of multidimensional data, in which a tensor is given for each point in space. Often, it is a 3 × 3 array in each voxel. To detect the patterns of interest in the field, special matching methods must be developed. We propose a method for the description and matching of TF patterns under an unknown affine transformation of the field. Transformations of TFs act not only in the spatial coordinates but also on the field values, which makes the detection more challenging. To measure the similarity between the template and the field patch, we propose original invariants with respect to affine transformations designed from moments. Their performance is demonstrated by experiments on real data from diffusion tensor imaging.
action
ARLID cav_un_auth*0449343
name Scandinavian Conference on Image Analysis 2023 /23./
dates 20230418
mrcbC20-s 20230421
place Levi
country FI
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2024
num_of_auth 5
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0342936
cooperation
ARLID cav_un_auth*0449356
name MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine IKEM, V ́ıdeˇnsk ́a 1958/9, 140 21 Praha 4, Czech Republic
institution IKEM
country CZ
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0571254 Image Analysis: 23rd Scandinavian Conference, SCIA 2023 978-3-031-31437-7 299 313 Cham Springer 2023 Lecture notes on computer science LNCS 13886
mrcbU67 Gade R. 340