bibtype J - Journal Article
ARLID 0572566
utime 20240402214024.5
mtime 20230605235959.9
SCOPUS 85137247923
WOS 000847248700001
DOI 10.1007/s10959-022-01197-7
title (primary) (eng) Commutative monoid duality
specification
page_count 28 s.
media_type P
serial
ARLID cav_un_epca*0254080
ISSN 0894-9840
title Journal of Theoretical Probability
volume_id 36
volume 2 (2023)
page_num 1088-1115
publisher
name Springer
keyword interacting particle system
keyword duality
keyword monoid
keyword semiring
author (primary)
ARLID cav_un_auth*0450907
name1 Latz
name2 Jan Niklas
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country NL
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0217893
name1 Swart
name2 Jan M.
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/SI/swart-0572566.pdf
source
url https://link.springer.com/article/10.1007/s10959-022-01197-7
cas_special
project
project_id GA20-08468S
agency GA ČR
ARLID cav_un_auth*0397552
abstract (eng) We introduce two partially overlapping classes of pathwise dualities between interacting particle systems that are based on commutative monoids (semigroups with a neutral element) and semirings, respectively. For interacting particle systems whose local state space has two elements, this approach yields a unified treatment of the well-known additive and cancellative dualities. For local state spaces with three or more elements, we discover several new dualities.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0343226
cooperation
ARLID cav_un_auth*0331329
name Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
country CZ
confidential S
mrcbC86 Article Statistics Probability
mrcbC91 A
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 0.546
mrcbT16-s 0.588
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2023
mrcbU14 85137247923 SCOPUS
mrcbU24 PUBMED
mrcbU34 000847248700001 WOS
mrcbU63 cav_un_epca*0254080 Journal of Theoretical Probability 36 2 2023 1088 1115 0894-9840 1572-9230 Springer