bibtype J - Journal Article
ARLID 0573509
utime 20240402214138.4
mtime 20230712235959.9
SCOPUS 85165538154
WOS 001048425800001
DOI 10.1016/j.ijar.2023.108976
title (primary) (eng) On conditional belief functions in directed graphical models in the Dempster-Shafer theory
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 160
publisher
name Elsevier
keyword Dempster-Shafer theory of belief functions
keyword Conditional belief functions
keyword Smets' conditional embedding
keyword Belief-function directed graphical models
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0275452
name1 Shenoy
name2 P. P.
country US
source
url http://library.utia.cas.cz/separaty/2023/MTR/jirousek-0573509.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0888613X2300107X?via%3Dihub
cas_special
project
project_id GA21-07494S
agency GA ČR
country CZ
ARLID cav_un_auth*0430801
abstract (eng) The primary goal is to define conditional belief functions in the Dempster-Shafer theory. We do so similarly to probability theory's notion of conditional probability tables. Conditional belief functions are necessary for constructing directed graphical belief function models in the same sense as conditional probability tables are necessary for constructing Bayesian networks. We provide examples of conditional belief functions, including those obtained by Smets' conditional embedding. Besides defining conditional belief functions, we state and prove a few basic properties of conditionals. In the belief-function literature, conditionals are defined starting from a joint belief function. Conditionals are then defined using the removal operator, an inverse of Dempster's combination operator. When such conditionals are well-defined belief functions, we show that our definition is equivalent to these definitions.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2024
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344419
confidential S
article_num 108976
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.75
mrcbT16-s 0.877
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2023
mrcbU14 85165538154 SCOPUS
mrcbU24 PUBMED
mrcbU34 001048425800001 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 160 1 2023 0888-613X 1873-4731 Elsevier