bibtype J - Journal Article
ARLID 0573588
utime 20240402214144.6
mtime 20230717235959.9
SCOPUS 85166665633
WOS 001039370200001
DOI 10.1016/j.automatica.2023.111185
title (primary) (eng) Model-based preference quantification
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0256218
ISSN 0005-1098
title Automatica
volume_id 156
publisher
name Elsevier
keyword Dynamic performance
keyword Probabilistic
keyword Preferences
keyword Optimal strategy
keyword Preference elicitation
keyword Exploration
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0426627
name1 Siváková
name2 Tereza
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/AS/karny-0573588-preprint.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0005109823003461?via%3Dihub
cas_special
project
project_id CA21169
agency EU-COST
country XE
ARLID cav_un_auth*0452289
abstract (eng) Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their preferences dependent on several attributes. The paper provides the needed preference completion and quantification for fully probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density (pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours, small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler divergence (KLD) of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from the set of pds compatible with partially-specified agent’s preferences. The optimal ideal pd minimises the KLD minima reached by the optimal strategies for respective imminent ideal pds. This preference-focused twin of the minimum KLD principle was applied to special sets of ideal pds. The paper extends them towards exploration and balancing contradictory wishes on states and actions.
result_subspec WOS
RIV IN
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2024
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344021
confidential S
article_num 111185
mrcbC91 C
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 2.323
mrcbT16-s 3.502
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2023
mrcbU14 85166665633 SCOPUS
mrcbU24 PUBMED
mrcbU34 001039370200001 WOS
mrcbU63 cav_un_epca*0256218 Automatica Roč. 156 č. 1 2023 0005-1098 1873-2836 Elsevier